Resolution Enhancement for Hyperspectral Images: A Super-Resolution and Fusion Approach

ICASSP 2017

March 6, 2017

Chiman Kwan^{1*}, Joon Hee Choi², Stanley Chan², Jin Zhou¹, and Bence Budavari¹

1 Signal Processing, Inc.

2 Purdue University

* Contact email: chiman.kwan@signalpro.net

Contents

1.	Research Motivations	3-4
2.	Technical Approach	5-7
3.	Experimental Results	8-18
4.	Conclusions and Future Research	19

Signal Processing, Inc.

1. Research Motivation

- Existing hyperspectral images have resolutions much lower than that of high resolution color images (WV-2, WV-3, etc.)
- Fusing color images with hyperspectral images will yield high spatial hyperspectral images that will enhance the performance of many applications.
- In Loncan et al.'s paper, over 10 algorithms were evaluated. We divide the methods into 3 groups:
 - Group 1: PSF is needed
 - Group 2: No need of PSF
 - Group 3: Single image super-resolution methods
- New single image super-resolution algorithms such as the PAP-ADMM appear in the literature.
- There are fusion algorithms (no need of PSF) developed by our team (hybrid color mapping (HCM)) and others (Group 2) that can be used to address the above fusion problem.

- Q1: Since there are some new development in single image superresolution algorithms recently, will a single-image super-resolution method alone be sufficient to produce high-resolution hyperspectral images?
- Q2: Is it possible to incorporate PSF into our HCM algorithm? If yes, how much will the single-image super-resolution improve the HCM performance?
- Q3: Will the use of PSF also help improve Group 2's performance?

2. Technical Approach

Fig. 1. Outline of the proposed method. We use hybrid color mapping (HCM) to fuse low-resolution (LR) and high-resolution (HR) images. For LR images, we use a single-image super-resolution algorithm to first enhance the resolution before feeding to the HCM.

Signal Processing, Inc.

Signal Processing, Inc.

2. Technical Approach

Color Mapping

- Step 1: Downsample HR color to LR color
- Step 2: Determine the mapping between a LR color pixel and a LR hyperspectral pixel
- Step 3: Map HR color to HR hyperspectral.
- Remark 1: Hybrid Color Mapping (HCM) Incorporate some selected bands in LR H into the LR C; also introduce a white band in LR C.
- Remark 2: Local HCM Divide the whole image into non-overlapping patches and each patch has its own transformation matrix T.

Plug-and-Play – Alternating Direction Method of Multipliers (PAP-ADMM)

• Consider the j-th band of the hyperspectral image, the relationship between low and high resolution pixels is given by

$$oldsymbol{s}_{j}^{L}=oldsymbol{D}oldsymbol{A}oldsymbol{s}_{j}^{H}+oldsymbol{\eta}$$

where D is downsampling matrix, A is the blur matrix containing the PSF.

• The problem of image super-resolution is to solve an optimization.

$$(\boldsymbol{s}_1^H, \dots, \boldsymbol{s}_P^H) = \underset{\boldsymbol{s}_1^H, \dots, \boldsymbol{s}_P^H}{\operatorname{argmin}} \sum_{j=1}^P \left(\|\boldsymbol{s}_j^L - \boldsymbol{D}\boldsymbol{A}\boldsymbol{s}_j^H\|^2 + \lambda g(\boldsymbol{s}_j^H) \right)$$

Signal Processing, Inc.

Data

- AF data from the Air Force.
 - 267 x 342 x124,
 - ranging from 461nm to 901nm.
- NASA AVIRIS
 - 300 x 300 x 213,
 - ranging from 380nm to 2500nm
- To simulate the low-resolution hyperspectral images, we downsample the images spatially with a factor of K = 9 (3 x 3) using a 5 x 5 Gaussian point spread function.
- HR color images are taken from the appropriate bands of the high-resolution hyperspectral images.

AF

NASA AVIRIS

Comparison between HCM and PAP-ADMM

Table 1: Comparison of HCM and PAP-ADMM using the NASA image.

Methods	RMSE	CC	SAM	ERGAS
PAP-ADMM [19]	66.2481	0.95311	0.78477	1.9783
HCM [17]	44.3475	0.94915	0.99064	2.0302
PAP-ADMM+HCM	30.1907	0.96719	0.90084	1.7205

 REF
 Bicubic
 Super Resolution
 Our Method

 Fig. 2. AVIRIS images in visible range using different methods

• Single image resolution method is not sufficient. This answers Q1.

• Fusing PAP-ADMM with HCM can significantly improve performance. This answers Q2.

Comparison with Groups 1 to 3 Methods

PAP-ADMM does not help Group 2 methods because Group 2 methods have built-in high frequency content injection by using pan info. Consequently, having PAP-ADMM as the pre-processing step to Group 2 methods overcompensates the images. This answers Q3.

	AF				AVIRIS						
Group	Methods	Time	RMSE	CC	SAM	ERGAS	Time	RMSE	CC	SAM	ERGAS
	CNMF [4]	12.52	0.5992	0.9922	1.4351	1.7229	23.75	32.2868	0.9456	0.9590	2.1225
1	Bayes Naive [5]	0.58	0.4357	0.9881	1.2141	1.6588	0.86	67.2879	0.9474	0.8136	2.1078
	Bayes Sparse [6]	208.82	0.4133	0.9900	1.2395	1.5529	235.50	51.7010	0.9619	0.7635	1.8657
	SFIM [16]	0.99†	0.7176	0.9846	1.5014	2.2252	1.56†	63.7443	0.9469	0.9317	2.0790
	MTF GLP [12]	1.38†	0.8220	0.9829	1.6173	2.4702	2.25†	57.5260	0.9524	0.9254	2.0103
	MTF GLP HTM [13]	1.40 [†]	0.8096	0.9833	1.5540	2.4387	2.23†	57.5618	0.9524	0.9201	2.0119
2	GS [10]	1.05†	2.1787	0.8578	2.4462	7.0827	1.83†	54.9411	0.9554	0.9420	1.9609
2	GSA [11]	1.21 [†]	0.7485	0.9875	1.5212	2.1898	1.98†	32.4501	0.9695	0.8608	1.6660
	PCA [8]	2.37 [†]	2.3819	0.8382	2.6398	7.7194	2.98 [†]	48.9916	0.9603	0.9246	1.8706
	GFPCA [9]	1.17†	0.6478	0.9862	1.5370	2.0573	2.17 [†]	61.9038	0.9391	1.1720	2.2480
	Hysure [14, 15]	117.06†	0.8683	0.9810	1.7741	2.6102	62.47†	38.8667	0.9590	1.0240	1.8667
	PAP-ADMM [19]	2144.00	0.4308	0.9889	1.1622	1.6149	3368.00	66.2481	0.9531	0.7848	1.9783
3	Super Resolution [18]	279.18	0.5232	0.9839	1.3215	1.9584	1329.59	86.7154	0.9263	0.9970	2.4110
	Bicubic [27]	0.04	0.5852	0.9807	1.3554	2.1560	0.10	92.2143	0.9118	1.0369	2.5728
	HCM no deblur [17]	0.59	0.5812	0.9908	1.4223	1.7510	1.50	44.3475	0.9492	0.9906	2.0302
Ours	HCM+Lucy [28]	1.02	0.6009	0.9879	1.3950	1.9308	1.50	37.2436	0.9518	0.9683	1.9720
	Our method	0.59†	0.4151	0.9956	1.1442	1.2514	1.50†	30.1907	0.9672	0.9008	1.7205

Table 2. Comparison of our methods with various pansharpening methods on AF and AVIRIS. [†]: These methods involve PAP-ADMM but we did not include PAP-ADMM's runtime in order to illustrate the differences.

9

Comparison with Group 2 (AF image)

Comparison with Group 2 (AF image)

Signal Processing, Inc.

9

Comparison with Group 2 (NASA AVIRIS image)

Signal Processing, Inc.

Comparison with Group 2 (NASA AVIRIS image)

Signal Processing, Inc.

3. Experimental Results

Comparison with Groups 1 and 3 (AF image)

Comparison with Groups 1 and 3 (AF image)

Comparison with Groups 1 and 3 (NASA AVIRIS image)

Comparison with Groups 1 and 3 (NASA AVIRIS image)

- We presented a new fusion algorithm to enhance the resolution of hyperspectral images by combining high resolution color images with low resolution hyperspectral images.
- Our new algorithm is an integration of a hybrid color mapping algorithm and a single image super-resolution algorithm. While the concept of the new approach is simple, the performance is comparable to Group 1 methods and better than most of Group 2 methods.
- Future research direction will be focused on speeding up the algorithm, and investigating the performance gain in classification and other high-level vision tasks such as target detection.