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Hyper-spectral Image (HSI) Classification

I Visible images have only three bands as red,
green and blue.

I HSI: Captures information using many bands of
electromagnetic spectrum

I Applications

Environmental monitoring, target detection,
homeland security



Representation Learning of HSI

I High dimensional features due to many bands

I Robust representation with dimension reduction
techniques needed

I PCA, ICA

I Auto-encoders

I We focus on auto-encoder based technique.



Issues with representation Learning using auto-encoder

I Designed for sample reconstruction and not
classification
e.g. denoising auto-encoder, sparse
auto-encoder

I Representations may not be discriminative

I Class-encoder (CEC1): issue with class
imbalance

We propose Class-specific Coders (CSC) for HSI
classification.

1Learning Descriminative Features with Class-encoders, CVPR Workshop’16



Class-specific Coders (CSC)

I One coder (encoder-decoder framework) for
each object class

I Coder trained on every input-output sample pair
for a given class

Figure 1: Class-specific coders



Class-specific Coders (CSC)

I Base loss function
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xck , x
c
j : Class C input and reconstructed sample

W c ,W cT : Encoder and decoder weights of
class C -coder

Nc : number of samples of class C

Ω(·) : regularization function



Training CSC with Orthogonality Constraints

I Loss function

arg min
W c ,Hc
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Hc : Matrix of latent representations of inputs
samples in X̃ c

X
c
: Matrix containing reconstructed sample

W c ,W cT : Encoder and decoder weights of
class C -coder

I : Identity matrix

α, β: Regularization constants



Feature Encoding using CSC

I Concatenate latent/hidden representations from
each CSC

I Proposed feature descriptor has dimension of nh
where n is number of classes and h is dimension
of latent feature of each CSC.

Figure 2: Feature encoding using CSCs



Results on HSI Datasets

Feature Encoding Botswana Indian Pines
PCA + NN based classifier 93.9 89.5

Auto-encoder (AE) 90.8 85.8
Class-encoder (CEC) 91.2 90.4

Sparse AE 85.5 82.2
Denoising AE 37.1 45.5
CSC (Ours) 94.5 91.2

Table 1: Comparison of classification accuracy (%) of different
auto-encoder features (latent) and CSC feature encoding.



Conclusions

I CSC: Novel encoder-decoder framework

I CSC maps the sample to the mean of a class

I Simple but effective feature encoding scheme of
concatenation of latent representations

I Improved performance on HSI classification over
existing AE models
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