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Hyper-spectral Image (HSI) Classification

» Visible images have only three bands as red,
green and blue.

» HSI: Captures information using many bands of
electromagnetic spectrum

» Applications

Environmental monitoring, target detection,
homeland security



Representation Learning of HSI

» High dimensional features due to many bands

» Robust representation with dimension reduction
techniques needed

» PCA, ICA

» Auto-encoders

» We focus on auto-encoder based technique.



Issues with representation Learning using auto-encoder

» Designed for sample reconstruction and not
classification
e.g. denoising auto-encoder, sparse
auto-encoder

» Representations may not be discriminative

» Class-encoder (CEC!): issue with class
imbalance

We propose Class-specific Coders (CSC) for HSI
classification.

!Learning Descriminative Features with Class-encoders, CVPR Workshop'16



Class-specific Coders (CSC)

» One coder (encoder-decoder framework) for
each object class

» Coder trained on every input-output sample pair
for a given class
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Figure 1: Class-specific coders



Class-specific Coders (CSC)

» Base loss function
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Xi, X Class C input and reconstructed sample

W¢e, WT: Encoder and decoder weights of
class C-coder

N.: number of samples of class C

Q(-) : regularization function



Training CSC with Orthogonality Constraints
» Loss function
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H¢: Matrix of latent representations of inputs
samples in X¢

X°: Matrix containing reconstructed sample

We, WeT: Encoder and decoder weights of
class C-coder

I: ldentity matrix

a, B: Regularization constants



Feature Encoding using CSC

» Concatenate latent/hidden representations from
each CSC

» Proposed feature descriptor has dimension of nh
where n is number of classes and h is dimension
of latent feature of each CSC.
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Figure 2: Feature encoding using CSCs



Results on HSI Datasets

Feature Encoding Botswana | Indian Pines
PCA + NN based classifier 93.9 89.5
Auto-encoder (AE) 90.8 85.8
Class-encoder (CEC) 91.2 90.4
Sparse AE 85.5 82.2
Denoising AE 37.1 45.5
CSC (Ours) 94.5 91.2

Table 1: Comparison of classification accuracy (%) of different
auto-encoder features (latent) and CSC feature encoding.




Conclusions

» CSC: Novel encoder-decoder framework
» CSC maps the sample to the mean of a class

» Simple but effective feature encoding scheme of
concatenation of latent representations

» Improved performance on HSI classification over
existing AE models
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