Innin -

Objective

Goal: Enable Fast Fourier Transform (FFT) and fast filtering on large graphs. Approach: Provide a general method for approximating the graph Fourier matrix \mathbf{U} , giving approximations $\hat{\mathbf{U}}$ that can be applied rapidly.

Graph Fourier transform

Let $\mathbf{L} \in \mathbb{R}^{n \times n}$ be the laplacian matrix of a graph, and $\mathbf{U} \in \mathbb{R}^{n \times n}$ its eigenvectors matrix. Let $\mathbf{x} \in \mathbb{R}^n$ be a signal on the graph, and $\mathbf{y} \in \mathbb{R}^n$ its Fourier transform, we have:

$$\mathbf{y} = \mathbf{U}^T \mathbf{x}$$
$$\mathbf{x} = \mathbf{U} \mathbf{y}.$$

The matrix \mathbf{U} being dense in general, the Fourier transform costs $\mathcal{O}(n^2)$ arithmetic operations.

Fast transforms

Many widely used transforms (classical Fourier, wavelets, DCT, etc.) are paired with a fast algorithm, exploiting the factorizability of the assocciated matrix A into sparse factors,

$$\mathbf{A} = \prod_{j=1}^{J} \mathbf{S}_j.$$

This factorizability is necessary and sufficient for a fast linear algorithm to exist. In the case of the classical Fourier transform, A can be factorized into $J = \log_2(n)$ factors, each having 2n nonzero entries.

Contact Information

luc.le-magoarou@inria.fr

Are there approximate Fast Fourier Transform on graphs ?

Luc Le Magoarou, Rémi Gribonval

Inria, Rennes, France

FA\muST approximations

We approximate \mathbf{U} using Flexible Approximate MUlti-layer Sparse Transforms (FA μ ST) [1]:

$$\mathbf{U} \approx \hat{\mathbf{U}} = \prod_{j=1}^{J} \mathbf{S}_j,$$

allowing to compute approximate Fourier transformations $(\hat{\mathbf{U}}^T \mathbf{x} \text{ and } \hat{\mathbf{U}} \mathbf{y})$ in only $\mathcal{O}\left(\sum_{i=1}^{n} \|\mathbf{S}_i\|_0\right)$ arithmetic operations.

Main Contribution

A flexible approach that allows to get FA μ STs with computational complexities $\mathcal{O}(n^{\alpha})$, $1 < \alpha < 2$, approximating well the Fourier transform of many classical families of graphs.

Experimental validation

Acknowledgments

This work was supported in part by the European Research Council, PLEASE project (ERC-StG-2011-277906).

Optimization problems

We consider two optimization problems:

• Approximate factorization of \mathbf{U} (giving $\hat{\mathbf{U}}_{\text{fact}}$): $\begin{array}{ll} \underset{\mathbf{S}_{1},\ldots,\mathbf{S}_{J}}{\text{minimize}} & \frac{1}{2} \left\| \mathbf{U} - \mathbf{S}_{J} \ldots \mathbf{S}_{1} \right\|_{F}^{2} \\ \text{subject to} & \mathbf{S}_{j} \in \mathcal{S}_{j}, \, \forall j \in \{1,\ldots,J\}, \end{array}$ • Approximate diagonalization of \mathbf{L} (giving $\hat{\mathbf{U}}_{\text{diag}}$): $\begin{array}{ll} \underset{\mathbf{S}_{1},\ldots,\mathbf{S}_{J},\mathbf{D}}{\text{minimize}} & \frac{1}{4} \left\| \mathbf{L} - \mathbf{S}_{J} \ldots \mathbf{S}_{1} \mathbf{D} \mathbf{S}_{1}^{T} \ldots \mathbf{S}_{J}^{T} \right\|_{F}^{2} \\ \text{subject to} & \mathbf{S}_{j} \in \mathcal{S}_{j}, \, \forall j \in \{1,\ldots,J\} \end{array}$ (P2) $\mathbf{D} \in \mathcal{D},$

both tackled with the hierarchical strategy of [1].

	$\sigma = 0.3 \sigma$	$\sigma = 0.4 \sigma$	$\sigma = 0.5$
Noisy	1.82	-0.68	-2.65
Filtered using \mathbf{U}	5.11	4.57	3.89
Filtered using $\hat{\mathbf{U}}_{\text{diag}}$	4.04	3.62	3.11
Filtered using $\hat{\mathbf{U}}_{\text{fact}}$	4.70	4.23	3.59

Table 1: Filtering results, the SNRs in dBs and in average over 100 independently drawn signals for each noise level are given.

•	Des
	con
•	Imj
	rec

[1] Luc Le Magoarou and Rémi Gribonval. Flexible multi-layer sparse approximations of matrices and applications. CoRR, abs/1506.07300, 2015.

Filtering experiment

Figure 3: Example of filtering on the Minnesota road graph. Filtering using U and filtering using a FA μ ST \hat{U}_{fact} (eight times more computationally efficient) are shown.

Future work

esigning a method that does not require a premputed diagonalization of the Laplacian \mathbf{L} . posing orthogonal FA μ STs, to ensure perfect construction $(\hat{\mathbf{U}}^T \hat{\mathbf{U}} = \mathbf{Id}).$

References