

Cyber-Resilient Control of Inverter Based Microgrids

IEEE Global Signal & Information Processing Conference

Martine Chlela

McGill University Electric Energy Systems Laboratory http://www.power.ece.mcgill.ca/

7-9 December 2016

Outline

- Background
- Microgrid Power Electronic Interfaced DERs Types & Control
- Microgrid Control Architecture
- Cyber Security for Microgrids
- Proposed Cyber Resilient Control Strategy
- Microgrid Benchmark System & Simulation Results
- Conclusion

Background – *Renewable Energy Penetration*

2014

2040

Background – *Power Electronic Interfaces*

- Power electronic inverters are used to interface the extensively deployed renewable DERs in microgrids
 - > Decouple the rotating masses from the grid i.e. type 4 wind turbine
 - > Interface systems with no inertia i.e. photovoltaics and energy storage
 - Provide poor V&f response in the event of disturbances due to the lack of inertia
 - Control of PEI DERs is a major concern, specially in 100% inverterinterfaced islanded microgrids

Microgrid PEI DERs Types & Control-*Renewable DER Current-Controlled VSI*

- Grid-tie inverters with DC-links fed from DC-DC converters with power control loops following MPPT curves. No active regulation of V&f
- The VSI outer loop generates an inverter current reference to maintain a DC-link voltage

Microgrid PEI DERs Types & Control-*Isochronous ESS Voltage-Controlled VSI*

- The ESS is operated as the isochronous resource to set & regulate the islanded microgrids voltage and frequency
- The VSI outer loop regulates the grid voltage to its reference value. The inner loop controls the inverter current. The grid-side frequency is readily imposed by a virtual PLL

Microgrid Control Architecture – *Reliance on Communications*

Cyber Security for Microgrids – *Types of Cyber-Attacks*

Cyber Security for Microgrids – Data Integrity Cyber-Attack & Performance Metrics

- The cyber-attack tampers with the protection and control commands sent to the DERs circuit breakers to modify their status causing their sudden disconnection
 - A DER disconnection requires a surge in power from the isochronous generator - more current to be supplied by the PEI
 - In 100% inverter-interfaced microgrids, active power is proportional to voltage
 - Large active power imbalances cause severe voltage excursions at the grid side that could not be remediated by local controllers
 - Cyber-resilient & intelligent control algorithms need to be employed to mitigate the attack

Proposed Cyber-Resilient Control Strategy – Supplementary Control Loop for the Voltage-Controlled VSI

- In analogy with the virtual inertia concept applied to regulate frequency excursions, a virtual inertial controller is added to the PEI DERs primary control loops to provide transient voltage support
- The inner current regulation control loop of the ESS VSI modified
- $\Delta V \nearrow I_{d inertia ref} \nearrow I_{d ref} \cancel{2}$ The resulting contribution is limited by the maximum inverter current

Proposed Cyber-Resilient Control Strategy – Supplementary Control Loop for the Current-Controlled VSI

- The MPPT controller of the WTG is also modified to incorporate virtual inertia
- The virtual inertia active power contribution is added to MPPT reference to set the WTG power reference. The supplementary control contribution is limited by the WTG dynamics

Proposed Cyber-Resilient Control Strategy – *Conventional Load Shedding Scheme*

- In the event of large active power disturbances causing the grid-forming ESS and WTG to saturate, virtual inertial control would not be sufficient to provide complete compensation and voltage regulation
- Traditional UVLS employed to shed % of loads in proportion to voltage excursions – in analogy to UFLS of the NERC standard.

Voltage Threshold (p.u.)	Total time (s)	Load shed at stage (%)	Cumulative load shed (%)
0.9750	10.0	3	31
0.9816	0.30	7	28
0.9850	0.30	7	21
0.9883	0.30	7	14
0.9916	0.30	7	7

Proposed Cyber-Resilient Control Strategy – *Adaptive Load Shedding Scheme*

- ★ The adaptive load shedding scheme developed activate if

 ΔV_{pcc} ≤ ΔV_{th}
 the current reference of the isochronous DER VSI reaches its maximum rated value
- Load is shed only when voltage excursions are due to the inability of the isochronous DER to generate more power and provide balance

Microgrid Benchmark System

- 25kV distribution system adapted from a utility feeder and reconfigured as a microgrid
- Microgrid PEI DERs & control employed:
 - I 50 kW WTG
 interfaced through a current controlled grid-tie
 50 kW PV source
 inverter, following the corresponding MPPT curves
 - I25 kW/I25kWh ESS operated as the grid forming DER regulating & forming the voltage and frequency of the islanded microgrid
- Cyber-attack considered: Attacker with valid user credential gains access to the operator workstation and tampers with the command sent to the PV unit circuit breaker causing a sudden disconnection of the renewable source at 20 seconds

Impact assessment – *Data integrity cyber-attack on Inverter-interfaced microgrids*

Available active power

Shortage of active power

Case Study 1 – Available Active Power *Mitigation Performance & Validation*

Case Study 2 – Shortage of Active Power *Mitigation Performance & Validation*

Results Summary

		Voltage nadir (p.u.)	Load shed (kW)
Case 1	No control	0.9139	
	Virtual Inertia	0.9757	
	Traditional UVLS + VI	0.9757	31
	Adaptive UVLS + VI	0.9757	0
Case 2	No control	0.8653	
	Virtual Inertia	0.8682	
	Traditional UVLS + VI	0.9655	67.2
	Adaptive UVLS + VI	0.9666	17.13

Virtual inertia provident suffixidets addition pensation as the DER

- capacity limits are reached
 Unnecessary load shedding due to traditional UVLS
- Unnecessary load shedding due to traditional UVLS

Conclusion

- Impact assessment of data integrity cyber-attacks on the power management strategies of 100% inverter-interfaced islanded microgrids
- Two-layer cyber-resilient control consisting of supplementary local control loops and load management schemes to enhance resilience to attacks
 - Virtual inertial control added to the WTG and the ESS primary controllers provides transient voltage regulation by smoothing the ramps streaming from the cyber-attack
 - Adaptive load management strategy to overcome the DERs rated capacity limits ensures post-attack active power balance

Q&A

Thank you!!

Martine Chlela martine.chlela@mail.mcgill.ca Electric Energy Systems Laboratory http://www.power.ece.mcgill.ca/ McGill University

