

SUPER-RESOLUTION SPECTRAL ANALYSIS FOR ULTRASOUND SCATTER CHARACTERIZATION Konstantinos Diamantis¹, Maruf A. Dhali¹, Gavin Gibson², Yan Yan³, James R. Hopgood³, and Vassilis Sboros¹

¹School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, UK; ²School of Mathematical & Computer Sciences, Heriot-Watt University, Edinburgh, UK; ³School of Engineering, University of Edinburgh, Edinburgh, UK

(1)

Introduction

Motivation

- Parametric Bayesian spectral estimation outperforms the conventional Fourier Transform (FT) based methods at the expense of computational time.
- Increased frequency resolution in ultrasound signal analysis may reveal new diagnostic information.

Research Question

 Can ultrasound signals be fully characterized (frequency, amplitude, phase, noise) based on Bayesian spectral estimation?

Summary

Background

- In ultrasound, the reflected echoes from point scatterers, are short sinusoidal signals with many closely spaced frequency components.
- The frequency resolution attained by the FT is limited by the small number of signal samples.
- Prior knowledge and parametric spectral estimation can be used to extract previously hidden signal characteristics.

Objective

- Reconstruct real ultrasound signals based on an already existing rjMCMC algorithm.
- Reduce the calculation load the method introduces.
- Compare the initial and reconstructed signal and identify the benefits of the parametric estimation.

Approach

- Apply a modified rjMCMC algorithm to the acquired ultrasound point scatter data.
- Extract a reasonable summary of the algorithm's output through clustering, outlier rejection and signal comparison.

Results

- The correlation coefficient between the original and the (noise-free) reconstructed signal is measured to 0.987.
- The minimum difference between neighboring frequencies that are both identified by the parametric approach is 110 kHz, whereas the FT theoretical limit is 220 kHz.
- The burn-in period of a single algorithm realization is reduced by 20%

Bayesian Inference

- Parametric estimation assumes a signal model and the received echoes are represented as a sum of sines and cosines in white Gaussian noise.
- A prior distribution is selected for each of the unknown model parameters:

Parameter	Prior distribution
Model order (k)	Truncated Poisson Distribution
Frequencies (ω_k)	Uniform Distribution
Amplitudes (a_k)	Multivariate Normal Distribution
Noise variance (σ_k^2)	Jeffrey's uninformative prior
Hyperparameter of k (Λ)	Gamma Distribution
Hyperparameter of a_k (δ^2)	Inverse Gamma Distribution

• The joint prior distribution is given by the product of all individual priors and the joint posterior distribution can be calculated as:

 $p(\Psi \mid y) = \frac{p(\Psi)p(y \mid \Psi)}{p(y)} \propto p(\Psi)p(y \mid \Psi) ,$

where $\Psi = (k, \{\omega_k, a_k, \sigma_k^2\})$, $p(\Psi)$ denotes the joint prior distribution and $p(y \mid \Psi)$ the likelihood function.

rjMCMC Algorithm

- 1: Insert the input signal to the algorithm
- 2: Employ the MUSIC method to provide an initial spectrum *estimate:* $(k^{(0)}, \{\omega_k, a_k, \sigma_k^2\}^{(0)})$
- 3: for i = 1 to numlteration do
- Sample Λ , δ^2
- Sample u from $U_{(0,1)}$ (uniform distribution) 5.
- Calculate the probabilities b_k and d_k based on $\frac{p(k+1)}{p(k)}$ 6: and $\frac{p(k-1)}{n(k)}$ respectively
- if $u \leq b_{k(i)}$ then
- Propose a new frequency randomly on $[0, \pi)$ and accept it with a probability of α_B (*birth move*)
- else if $u \leq b_{k(i)} + d_{k(i)}$ then 9:

Remove an existing frequency randomly from ω_k 10: and accept it with a probability of α_D (*death move*)

else 11:

Update for all k frequencies according to a pro-12: posal distribution and accept it with a probability α_U (update move)

end if 13:

Sample nuisance parameters a_k and σ_k^2 14:

15: **end for**

- 16: Separate estimates based on k
- 17: Remove outliers from a_k
- 18: Extract mean for ω_k , a_k and σ_k^2

19: *Reconstruct signal*

Measurement Setup

- A modified ultrasound transducer (Sonos5500 Philips) Medical Systems) is used to acquire echo signals from solid copper spheres (SCSs).
- The experimental setup consists of a water tank and tubing that allows the drop of SCSs by gravity.
- The received response of a 6-cycle SCS signal, where the transmit frequency is 1.62 MHz and the sampling frequency is 20 MHz is shown below:

Frequency Analysis

- Comparison of the FFT of the initial sphere signal with the output of the parametric spectral estimation.
- The Bayesian method results in individual amplitude and frequency values instead of a spectrum.

Conclusion

- The parametric spectral estimation provides a reconstructed signal with close resemblance to the echo signal.
- Minimum frequency separation is improved by a factor of two compared to FFT
- The method may significantly improve the sensitivity and the specificity of existing diagnostic examinations.