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m Landmines are self-contained explosive
devices that detonate when triggered by
a person or vehicle

m Factors that can trigger landmines
- Pressure
-  Movement
- Sound
- Vibration
- Passage of time
- Signals

m Types of landmines
- Anti-tank
- Anti-personnel

m Different shapes, casings and materials
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m Currently more than 50-70 million
uncleared landmines in at least
70 countries

m [t will take about 1,100 years to
remove all [andmines at the
current clearance rate

m Over 26,000 people are killed or
maimed every year by landmines

m Over 1,000,000 casualties
reported since 1980 [1]

m Half of all casualties in the Iraq
and Afghanistan wars were
attributed to land mines and
improvised explosive devices
(IEDs) [2]

[1] U.S. Department of State, ”Hidden Killers: The Global Landmine Crisis”, US Department of State Publication
[2] C. Wilson, ”Improvised explosive devices (IEDs) in Iraq and Afghanistan: effects and countermeasures”. CRS Report for Congress, 2007
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m Metal Detector
- Based on disturbances from time-varying magnetic field
- Most popular but risky and limited to metallic detection

m Acoustic/Seismic methods
- Based on vibration of materials subjected to sound waves
— Unaffected by moisture and weather but limited by depth of penetration and interference

m Biological Methods
- Use of trained dogs, rats, pigs, birds and bees
- Training required, false alarms common, distraction inevitable

m Mechanical Methods
- Includes prodding and use of mine clearing machines
- Efficient but risky and costly

m Electromagnetic Methods
- Use of microwaves, infrared, X-ray , GPR etc

- Microwaves produce ambiguous results, infrared-based algorithms are not well developed, X-
ray results are poor, GPR is promising
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m Electromagnetic pulses are directed at the physical Transmitter Receiver
scene-of-interest (SOIl) .
m Backscatter occurs when the transmitted pulse ’
encounters dielectric constant changes within an RN S
SOl

m Backscattered echoes capture the information
needed to map the SOI onto the reconstructed
Imaging space

m Buried targets are expected to have higher dielectric
constant values than surrounding material, such as
soil and rocks

m GPR data are echoes recorded by receivers for each
transmitted pulse
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Existing Methods for UNB-GPR Reconstruction

Delay-and-Sum (DAS)
- Fast and straightforward implementation
— Produces images with poor resolution and large side lobes

Recursive Sidelobe Minimization (RSM)

— Reconstructs images with reduced clutter and has been applied
in other SAR applications

- Does not incorporate the a priori information that SOl is sparse

Least Absolute Selection and Shrinkage Operator (LASSO)
— No straightforward way to choose parameter

Sparsity Learning Iterative Method (SLIM)

- Involves matrix inversion that may be too computationally
intensive for real applications
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m Determining a suitable choice for the parameter of the prior
probability density function is not straightforward

m Cross-validation is an off-line procedure that is time-
consuming and sacrifices measurement for validation

m |L-curve is an off-line procedure that is computationally
expensive for large-size large scale estimation problems
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m Use the MAP method to incorporate the a priori knowledge
that the SOI contains few scatterers

m Use “integrate-out” approach to obtain a hyper-parameter-free
prior probability density function

m Solve the resulting MAP objective functions using the
majorize-minimize optimization technique

m Jointly estimate noise power
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GPR Linear Model

Output of the jt" receiver at the it" transmit position
L

sij(t) = Z xap(t — i) + w(t)
=1
e x;: Unknown reflection coefficient at [** terrain pixel

« p(t): Transmitted pulse

* a;j;: Round trip pulse attenuation
* T;j;: Round trip pulse travel time
w (t): Noise

{y,;,-}: sampled GPR data where

yij = |5:;(0),5;;(T), ..., s;; (N — 1)T)]T
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GPR Linear Model (Cont.)

m Model:
y=Ax +w

m Vector y contains sampled GPR data for I transmit positions and |
receivers.

m Vector x contains L unknown reflection coefficients
m System matrix Ais (IJN) X L

m Problem Statement: Giveny and A4, estimate x

n
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Maximum A Posteriori Estimation

m MAP estimate:
Xyap = arg manfX|Y(x|Y)

m Assumptions:
- Noise is WGN with variance ¢*
— Reflection coefficients are independent and identically distributed

N\ . 1 K
Xmap=argmin_ |ly — Ax||3+ 3 logo® — log fx(x)

m Prior density function is Laplacian distribution

A
fla; 1) = > exp(—Alal)

n
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Maximum A Posteriori Estimation (Cont.)

Integrate-out approach places a noninformative hyperprior over a parameter [3] to give a
hyperparameter-free probability density function

fe(®) = jo fren () fa()dA

Conditional probability density function is the Laplacian distribution
fria(x|2) =7 e~#x

Hyperprior is the Jeffreys’ prior for the Laplacian distribution

1
fa(d) £ [I(A)]z (in terms of Fisher’s information)

02 log fxia(x|A 1
1(/1)=—E/1[ PYPR ) =—

fa) =7 (1>0)

G.C. Cawley, N.L. Talbot, and M. Girolami, ”Sparse multinomial logistic regression via bayesian L1 regularization ,  Bioinformatics,
pp. 209-216, 2007.
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Maximum A Posteriori Estimation (Cont.)

L
* © A 1
Fe(x) = jo G fa(dA = jo L[(E.e—alxn).zd/l

m  Simplifying and using the gamma integral
f () [1 4 ]
X) = -
¥ 2L Bk, lx Dt

m Resulting MAP objective function

1 K
¢(x,0°) = ﬁff)Ls(x) + + 3109(02) +L-y(x)

where
2
bLs(x) 2 [ly — Axl|]

L
y(x) 2 log <Z |xz|>
=1

n
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* g(x,y) is a majorizing function of f if

a) g(x,y) = f(x) forall x,y
b) g(x,x) = f(x) forall x

* MM algorithm
x(*1) = argmin g(x, x™)
X

|
I
f (x(n+1)) <f (x(n)) for all n | e

[llustration ot MM Concept

|
|
|
* Property of MM algorithm :
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PFEM Algorithm

Overview:

Suppose Q is a majorizing function for the MAP objective
function, ¢, at the point x™). Then,

sl & grag, min ¢ (x,020m); x(m))

2(m+1) A 2 arg mln ¢ (x(m+1) o )

g2>0

=§Hy—/lx(’”“)\\2
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What is a suitable choice for Q?

m For any xeR™ and function h(x),

log(h(x)) < log (h(x(m))) + i)

h(x(m)

ZL ZL e

4 |x
y(x) = log |x:| | < log ‘xl(m)‘ + . = (Tln) -1
=1 =1 lzl‘xl ‘

m Using De Leeuw and Lange’s [4] majorization function for |a]|

/ (m)
RN A i Ty e
o x™) = log Z\ )+ o -1
=1 % ‘

[4]J. de Leeuw and K. Lange, ’Sharp Quadratic Majorization in One Dimension” Computational Statistics and Data Analysis,
vol. 53 no.1 pp 2478 February 2004.
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m Majorizing function for ¢, ¢(x)

2
m De Pierro [5] developed a majorizing function for ([Ax(m)]k)
I,

1 (2; ™)) = z Cii (nkAklxl — nAax,™ + [Ax(m)]k)z

m Therefore,

K K K
qLS(x; x(m)) = z y,% — 2 Z yilAx];, + Z rk(x; x(m))
k=1 k=1 k=1

[5] A.R De Pierro," A modified expectaction Maximization algorithm for penalized likelihood estimation in emission
tomography”, IEEE transactions, medical imagery, pp 132-137, 1995
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Majorizing function for ¢:

Q(x x(m))
L
1
202 Z Yk — 2y [Ax]; + Z Crl nkAklxl - nkAklx _|_ [Ax(m)] )
k=1 =
(m)
14

k I L 2(x"l" )(xlz ( )) n )/(x(m)

+§log(02)+L-l0g Z|xl(m)| + L - l L — g
(=1 =1 |x |

m Taking the derivative of the majorizing function Q with respect to x; and setting it to
zero yields the desired update for the It" reflectance coefficient
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PFM Algorithm (Cont.)

m Updates for reflection coefficients and noise power:

S p&™ (Gl("") n xl(m)Hl)
X; = D(m) +L-02(m) ) [l=1,2,..,L
l

K

K
H() = Z N Aj, G(m)(l) - ZA“ (yk a [Ax(m)]k)
k=1

k=1

L
o <y
=1

2(m+1)_l . ( ) 2
o _K||y Ax(m+1 ||2
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m y(x)isdefined as
L
y(x) £ log z |x;| + ¢
=1

m C>0 insures the parameter-free MAP objective function has a minimizer

m Cischosen such that

P (%) < ¢(0)

m DAS image is used as initial estimate

m Acceleration techniques for computing H(l) and G(m)(l) from previous work [6] are used for
a fast memory-efficient implementation.

[6] M. Ndoye and J.M.M. Anderson, “An MM-Based Algorithm for L1”-Regularized Least-Squares Estimation with an application to Ground Penetrating Radar Image
Reconstruction”, IEEE Trans. Image Process.
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DIRECTION OF TRAVEL
16 RECEIVERS (2M APERTURE) L~ A
LEFT TX 2 : 2
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- @%\ o _7 Scatterers
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MIN RANGE: 8 M

MAX RANGE: 34 m

e A monocycle UWB pulse (300 -3000 MHz)
e 2 transmit antennas

e 1 active transmit antenna per shot
e 16 receive antennas

ARL SIRE System

Prototype
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Simulation Results: Real Data
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&  Comparison Using Threshold Detector
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Conclusions

m Developed Parameter-Free MAP algorithms have been
successfully applied to synthetic and real data from the

Impulse-based ARL SIRE system

m Algorithms produced images that are sparse with
suppressed background noise while retaining known

scatterers



Acknowledgement

This material is based upon work supported by or in part by,
the U.S. Army Research Laboratory and the U.S. Research
Office under contract number WO11NF-1120039




IIIIIIIIIII

THANK
YOU!



