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Natural TTS Synthesis by
Conditioning WaveNet on Mel
Spectrogram Predictions
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Tacotron 2 [ Mel to Wav ]

Tacotron 2 is a fully neural text-to-speech
system composed of two separate networks.

At the bottom is the feature prediction
network, Char to Mel, which predicts mel
spectrograms from plain text.

It's followed by a vocoder network, Mel to
Wave, that generates waveform samples L )
corresponding to the mel spectrogram T
features.
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Benefits of Tacotron 2

Easy to Get Started With

Tacotron 2 makes it easy to get started
with TTS. There is no need for labelled
phoneme, duration, or pitch data.
Tacotron 2 can be trained with just the
audio and text transcript.

Decoupling of Content and
Audio Quality

The mel spectrogram captures all content
information, such as pronunciation,
prosody, and speaker identity. Changes to
the Char to Mel network only affects
content, and changes to the Mel to Wave
network only affects audio quality.

Rapid / Parallel Development

The two networks can be improved
independently or in parallel. It is not
necessary to train both networks to
evaluate small changes to one of them.
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Caveats

Pronunciation

Tacotron 2 learns pronunciation from the
training data. While it can extrapolate
quite well to unseen words, it will make
mistakes on words with irregular
pronunciation.

Textnorm Tweaking Output

Tacotron 2 has only been trained on It is difficult to adjust the speed or pitch of
verbalized text. l.e., Currency, dates, phone a mel spectrogram, or to modify the
numbers, etc. are written out the way they  duration of individual phonemes.

are spoken. It's unclear how Tacotron 2

would do on the full end-to-end TTS task.
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Setup

J. Shen, et al. | Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions Google




Network Overview
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Training

e  Charto Mel and Mel to Wave networks trained separately, with
independent hyperparameters.

e  Teacher-forcing for training.

e  Charto Mel: L2 loss on predicted vs groundtruth mel spectrograms.

e  Mel to Wave: mixture of logistics loss[1,2].

[1] Salimans, Tim, et al. "PixelCNN++: Improving the PixelCNN with
Discretized Logistic Mixture Likelihood and Other Modifications."
[2] Oord, Aaron van den, et al. "Parallel WaveNet: Fast High-Fidelity
Speech Synthesis.", Section 2.1
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Mel Spectrogram

e tf.contrib.signal.stft()
tf.contrib.signal.linear_to_mel_weight_matrix()

e L2 loss drives predictions towards the mean, which
results in oversmoothed spectrograms. Mel to Wave
network trained on groundtruth spectrograms does not
handle this well!

®  Solution: train Mel to Wave on predicted spectrograms
generated in teacher-forcing mode.

Groundtruth
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Char to Mel - Encoder

Standard encoder architecture.
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Char to Mel - Decoder

Location Sensitive Attention[3].

At each timestep: predict Stop Token in [0, 1].
If >0.5, halt generation. Binary cross-entropy
loss with target = 1 only on the last frame.

[3] Chorowski, Jan K., et al. "Attention-based models for speech
recognition."
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Waveform
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Char to Mel - Post Net

Adds a residual to the spectrogram after all
the spectrogram frames are predicted.

Final loss = L2(before postnet) + L2(after
postnet) + BCE(stop token)
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Mel to Wave (WaveNet[4])

output waveform !

[4] Van Den Oord, Aaron, et al. "WaveNet: A generative model for raw audio."

J. Shen, et al. | Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions Google



Mel to Wave (WaveNet[4])
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Results

J. Shen, et al. | Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions Google




Naturalness Evaluation

System MOS

Parametric 3.492 4+ 0.096
Tacotron (Griffin-Lim) 4.001 &+ 0.087
Concatenative 4.166 + 0.091
WaveNet (Linguistic) 4.341 £+ 0.051
Ground truth 4.582 + 0.053

Tacotron 2 (this paper) 4.526 + 0.066

Table 1. Mean Opinion Score (MOS) evaluations with 95% confi-
dence intervals computed from the t-distribution for various systems.
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Reducing Size of Mel to Wave Network

Total  Num Dilation  Receptive field

| | | : MOS

The mel spectrogram contains all content information, so layers cycles cyclesize  (samples/ms)
the Mel to Wave network doesn't need to do as much work. 30) 3 10 6,139 /255.8 4.526 + 0.066
24 4 6 505/21.0 4.547 £ 0.056
12 2 6 2531105 4.481 £ 0.059
30 30 1 61/2.5 3.930 £+ 0.076

Table 4. WaveNet with various layer and receptive field sizes.
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Is Tacotron 2 More Natural Than Recorded Speech
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Thank You

More samples can be found at
https://google.github.io/tacotron/publications/tacotron2
or Google "Tacotron 2 samples”

Google


https://google.github.io/tacotron/publications/tacotron2

Proprietary + Confidential

Additional Slides




Training Data

We trained on an internal US English dataset which
contains 24.6 hours of professionally recorded speech from
a single professional female speaker.

The data extremely high quality (same recording conditions
and volume levels, anechoic chamber, no sources of noise)
and has consistent and realistic prosody.
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Tacotron vs Tacotron 2
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