Group-Blind Detection with Very Large Antenna Arrays in the Presence of Pilot Contamination

Guido C. Ferrante^{*°}, Giovanni Geraci[‡], Tony Q. S. Quek^{*}, and Moe Z. Win[°] *SUTD, Singapore, [#]Bell Labs Nokia, Ireland, and ^oMIT, MA, USA

Introduction

Motivation

- Massive MIMO: key enabling technology to achieve 5G requirements
- Detector as simple as matched-filter is asymptotically optimal with perfect CSI
- Channel estimation based on pilots is standard practice in cellular networks
- Channel coherence time limits the maximum number of orthogonal pilots
- Pilots are reused in different cells: con-

Asymptotic Performance Analysis

Asymptotics (massive regime): $n \to \infty$, $K, L < \infty$. Signal space properties in the massive regime [2,3]: (i) $n^{-1} \boldsymbol{g}_{kl}^{\dagger} \boldsymbol{g}_{k'l'} \xrightarrow{a.s.} \beta_{kl} \delta_{kk'} \delta_{ll'}$, *i.e.*, channels are asymptotically almost surely orthogonal; (ii) $\hat{g}_{1k} \in \mathscr{S}_k = \text{range}\{g_{lk}\}_{l \ge 1}$ in high-SNR regime.

Results for L = 2 (one dominant interfering cell)

 $\mathscr{S}_2 = \operatorname{range}\{\mathscr{g}_{l2}\}_{l \ge 1}$ $\hat{g}_{12}, \tilde{g}_{12} \in \mathscr{S}_2$

 $\begin{aligned} \boldsymbol{\delta}_1 &= \operatorname{range}\{\boldsymbol{g}_{l1}\}_{l \ge 1} \\ \boldsymbol{\hat{g}}_{11}, \, \boldsymbol{\tilde{g}}_{11} \in \boldsymbol{\delta}_1 \end{aligned}$

Theorem

tamination arises

Problem statement: Pilot contamination limits the asymptotic rate achievable by massive MIMO. How to increase the asymptotic achievable rate while sticking to traditional channel estimation based on pilots reused in each cell?

System Model

System parameters and signals	
Parameters	Signals
 n antennas at the BS 	$oldsymbol{h}_{/k} \sim \mathcal{CN}(oldsymbol{0},oldsymbol{I})$, Var $[x_{/k}] = P$, $oldsymbol{n} \sim \mathcal{CN}(oldsymbol{0},oldsymbol{I})$
• L cells	
 K single-antenna users per cell 	$oldsymbol{y} = \sum_{l=1}^{N} \sum_{k=1}^{N} oldsymbol{h}_{lk} \sqrt{eta_{lk} extsf{x}_{lk}} + oldsymbol{n} = \sum_{l=1}^{N} oldsymbol{G}_l oldsymbol{x}_l + oldsymbol{n}$

Channel estimation

Estimation of channel between reference BS (cell 1) and user k (within the cell)

$$oldsymbol{\hat{g}}_{1k} = \left(\sum_{l\geq 1}oldsymbol{g}_{lk} + \sqrt{\epsilon}oldsymbol{
u}_{1k}
ight) arphi_{1k} oldsymbol{eta}_{1k}^{-1},$$

where $1/\epsilon$ is equal to the effective training SNR, $\nu_{1k} \sim C\mathcal{N}(\mathbf{0}, \mathbf{I})$, and

SINR γ_{1k} achieved by the proposed group-blind detector with L = 2 satisfies

$$\gamma_{1k} \xrightarrow{\text{a.s.}} \bar{\gamma}_{1k} = \left[1 + \frac{1}{(1 + \epsilon/\beta_{2k})^2}\right] \bar{\gamma}'_{1k}$$

where $\bar{\gamma}'_{1k} = \beta_{1k}^2 \beta_{2k}^{-2}$ is the SINR achieved with non-group-blind detection.

Define asymptotic SINR gain: $\bar{\eta}_{1k} = \bar{\gamma}_{1k}/\bar{\gamma}'_{1k}$.

Corollary. Asymptotic SINR γ_{1k} and gain $\overline{\eta}_{1k}$ with L = 2 satisfy:

 $\bar{\gamma}_{1k} \to 2\bar{\gamma}'_{1k}, \quad \bar{\eta}_{1k} \to 2, \quad \text{as } \epsilon \to 0.$

In brief: In the high-SNR regime, the asymptotic SINR achieved with group-blind detection is doubled compared to traditional detection.

Fig. 1 Rate (b/s/Hz) vs. no. of antennas *n* with and without group-blind detection. Scenario parameters: L = 2, K = 1, SNR = 20

Scenario parameters:

L = 4, K = 1 or K = 10,

SNR = 10 dB, $\beta_{1k}/\beta_{2k} = 10$

dB (weak interference).

$$\begin{aligned}
\varphi_{1k} = \frac{\beta_{1k}^{2}}{\varepsilon + \sum_{i>1} \beta_{ki}}, \\
\text{In matrix form: channel estimations } \hat{G}_{i} = [\hat{g}_{11}, \dots, \hat{g}_{2k}] \text{ and errors } \tilde{G}_{i} = G_{i} - \hat{G}_{i}, \\
\hline
& \text{Achievable rate} \\
& R_{2,k} = \mathbb{F}[\log(1 + \gamma_{1k})] \\
\text{where expectation is with respect to estimated channels, and SINR } \gamma_{x} \text{ is } [3] \\
& \gamma_{x} = \frac{|w_{2k}^{*}\hat{g}_{1k}|^{2}}{\mathbb{E}\left[w_{1k}^{i}\left(\frac{1}{p^{2}}I + \hat{g}_{kk}\hat{g}_{1k}\right) + \sum_{j \neq k} g_{1j}g_{1j}^{i} + \sum_{j \neq k} g_{2j}g_{1j}^{i} + \sum_{j \neq k} g_{kj}g_{1j}^{i} + \sum_{j \neq k} g_{kj}g_{kj}^{i} + \sum_{$$

$\check{w}_{1k} \in \mathsf{range} \, G_1^+ \cap \mathsf{range} \, [G_1 \cdots G_L]$

• \dot{w}_{1k} is derived on the basis of $y_{ ext{in}} = \hat{G}_1 x_1 + n$ according to MMSE $\dot{\boldsymbol{w}}_{1k} = \operatorname{argmin}_{\boldsymbol{w}} \mathbb{E}[|\boldsymbol{x}_{1k} - \boldsymbol{w}^{\dagger}\boldsymbol{y}_{\mathrm{in}}|^2] = (\hat{\boldsymbol{G}}_1 \hat{\boldsymbol{G}}_1^{\dagger} + \frac{1}{P} \boldsymbol{I})^{-1} \hat{\boldsymbol{g}}_{1k}$

• \breve{w}_{1k} is derived on the basis of the whole received signal according to MMSE [1] $ec{w}_{1k} = \operatorname{argmin}_{\boldsymbol{w}} \mathbb{E}[|x_{1k} - (\dot{\boldsymbol{w}}_{1k} + \boldsymbol{w})^{\dagger} \boldsymbol{y}_{\mathrm{in}}|^{2}] = -ec{U}_{\hat{\boldsymbol{G}}_{1}} \left(ec{U}_{\hat{\boldsymbol{G}}_{1}}^{\dagger} \boldsymbol{C}_{\boldsymbol{y}'} ec{U}_{\hat{\boldsymbol{G}}_{1}}^{\dagger}
ight)^{-1} ec{U}_{\hat{\boldsymbol{G}}_{1}}^{\dagger} \boldsymbol{C}_{\boldsymbol{y}'} ec{w}_{1k}$ where $reve{U}_{\hat{G}_1}$ spans range $\hat{G}_1^\perp \cap$ range $[G_1 \cdots G_L]$ and $C_{y'}$ is the covariance of y'.

References

[1] X. Wang and A. Host-Madsen, "Group-blind multiuser detection for uplink CDMA," IEEE J. Sel. Areas Commun., vol. 17, no. 11, pp. 1971–1984, 1999. [2] T. Marzetta, "Noncooperative cellular wireless with unlimited numbers of base station antennas," IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590–3600, 2010. [3] J. Hoydis, S. ten Brink, and M. Debbah, "Massive MIMO in the UL/DL of cellular networks: How many antennas do we need?" IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 160–171, 2013. [4] G. C. Ferrante, G. Geraci, T. Q. S. Quek, and M. Z. Win, "Group-blind detection for uplink of massive MIMO systems," IEEE Trans. on Signal Process., 2015, submitted for publication.