Fast and Statistically Efficient Fundamental Frequency Estimation ICASSP 2016

March 23, 2016

<u>J. K. Nielsen</u>^{1,2}, T. L. Jensen¹, J. R. Jensen³, M. G. Christensen³, and S. H. Jensen¹

{jkn,tlj,shj}@es.aau.dk, {jrj,mgc}@create.aau.dk

²Aalborg University Dept. of Electronic Systems ³Bang & Olufsen A/S Denmark ¹Aalborg University Audio Analysis Lab, AD:MT

Supported by the Danish Council for Independent Research, the InnovationsFonden, and the Villum Foundation.

Fundamental Frequency Estimation Maximum Likelihood Estimation

Fast Maximum Likelihood Estimation

Results

Summary

HHO NEW GROUND Speech Signal Example TI BORG

Mathematical Model

Mathematical Model

$$x(t) = \sum_{i=1}^{l} h_i(t) + e(t) = \sum_{i=1}^{l} A_i \cos(i2\pi f_0 t + \phi_i) + e(t)$$
(1)

where

- A_i real amplitude of the *i*th harmonic
- ϕ_i phase of the *i*th harmonic
- f₀ fundamental frequency in Hz
- I the number of harmonics/model order
- e(t) white Gaussian noise with variance σ^2

Mathematical Model

Mathematical Model

$$x(t) = \sum_{i=1}^{l} h_i(t) + e(t) = \sum_{i=1}^{l} A_i \cos(i2\pi f_0 t + \phi_i) + e(t)$$
(1)

where

- A_i real amplitude of the *i*th harmonic
- ϕ_i phase of the *i*th harmonic
- f₀ fundamental frequency in Hz
- I the number of harmonics/model order
- e(t) white Gaussian noise with variance σ^2

Analysis problem: Get f_0 and I from the data.

Correlation Methods

A periodic signal satisfies that

$$x(t) = x(t+T) \tag{2}$$

where $T = 1/f_0$ is the period. Thus, the autocorrelation function of x(t) has a peak for a lag of T.

Correlation Methods

A periodic signal satisfies that

$$x(t) = x(t+T) \tag{2}$$

ATHO NEW C

where $T = 1/f_0$ is the period. Thus, the autocorrelation function of x(t) has a peak for a lag of T.

- + Intuitive and simple
- + Low computational complexity
- + No need to estimate the model order
- Fail for low fundamental frequencies
- Are very sensitive to noise

Correlation Methods

A periodic signal satisfies that

$$x(t) = x(t+T) \tag{2}$$

WHING NEW G

where $T = 1/f_0$ is the period. Thus, the autocorrelation function of x(t) has a peak for a lag of T.

- + Intuitive and simple
- + Low computational complexity
- + No need to estimate the model order
- Fail for low fundamental frequencies
- Are very sensitive to noise

Correlation methods such as **YIN** and **RAPT** are very popular.

Parametric Methods Estimate the parameters in

$$x(t) = \sum_{i=1}^{l} A_i \cos(i2\pi f_0 t + \phi_i) + e(t)$$
(3)
= $\sum_{i=1}^{l} \left[a_i \cos(i2\pi f_0 t) - b_i \sin(i2\pi f_0 t) \right] + e(t)$ (4)

ATHO NEW G

Parametric Methods Estimate the parameters in

$$x(t) = \sum_{i=1}^{l} A_i \cos(i2\pi f_0 t + \phi_i) + e(t)$$
(3)
= $\sum_{i=1}^{l} \left[a_i \cos(i2\pi f_0 t) - b_i \sin(i2\pi f_0 t) \right] + e(t)$ (4)

AND NEW C

- + High estimation accuracy
- + Work very well in even noisy conditions
- + Work for low fundamental frequencies
- The model order has to be estimated
- High computational complexity

Parametric Methods Estimate the parameters in

$$x(t) = \sum_{i=1}^{l} A_i \cos(i2\pi f_0 t + \phi_i) + e(t)$$
(3)
= $\sum_{i=1}^{l} \left[a_i \cos(i2\pi f_0 t) - b_i \sin(i2\pi f_0 t) \right] + e(t)$ (4)

HING NEW C

- + High estimation accuracy
- + Work very well in even noisy conditions
- + Work for low fundamental frequencies
- The model order has to be estimated
- High computational complexity (for MLE/NLS)

Periodic Signals Vector Signal Model

The sampled signal model

$$x(n) = \sum_{i=1}^{l} \left[a_i \cos(i\omega_0 n) - b_i \sin(i\omega_0 n) \right] + e(n)$$
(5)

for $n = n_0, n_0 + 1, ..., n_0 + N - 1$ can be written as

$$\boldsymbol{x} = \boldsymbol{Z}_{l}(\omega_{0})\boldsymbol{\alpha}_{l} + \boldsymbol{e} . \tag{6}$$

SHO NEW GROUND

where

$$\begin{aligned} \boldsymbol{Z}_{l}(\omega) &= \begin{bmatrix} \boldsymbol{c}(\omega) & \boldsymbol{c}(2\omega) & \cdots & \boldsymbol{c}(l\omega) & \boldsymbol{s}(\omega) & \boldsymbol{s}(2\omega) & \cdots & \boldsymbol{s}(l\omega) \end{bmatrix} \\ \boldsymbol{c}(\omega) &= \begin{bmatrix} \cos(\omega n_{0}) & \cdots & \cos(\omega(n_{0}+N-1)) \end{bmatrix}^{T} \\ \boldsymbol{s}(\omega) &= \begin{bmatrix} \sin(\omega n_{0}) & \cdots & \sin(\omega(n_{0}+N-1)) \end{bmatrix}^{T} \\ \boldsymbol{\alpha}_{l} &= \begin{bmatrix} \boldsymbol{a}_{l}^{T} & -\boldsymbol{b}_{l}^{T} \end{bmatrix}^{T}, \ \boldsymbol{a}_{l} &= \begin{bmatrix} a_{1} & \cdots & a_{l} \end{bmatrix}^{T}, \ \boldsymbol{b}_{l} &= \begin{bmatrix} b_{1} & \cdots & b_{l} \end{bmatrix}^{T}. \end{aligned}$$

Maximum Likelihood Estimation

The maximum likelihood estimate (MLE) for the fundamental frequency is

$$\hat{\omega}_0 = \operatorname*{argmax}_{\omega_0} \boldsymbol{x}^T \boldsymbol{Z}_I(\omega_0) \left[\boldsymbol{Z}_I^T(\omega_0) \boldsymbol{Z}_I(\omega_0) \right]^{-1} \boldsymbol{Z}_I^T(\omega_0) \boldsymbol{x}$$
(7)

and is also known as the nonlinear least squares (NLS) estimate.

Maximum Likelihood Estimation

The maximum likelihood estimate (MLE) for the fundamental frequency is

$$\hat{\omega}_0 = \operatorname*{argmax}_{\omega_0} \boldsymbol{x}^T \boldsymbol{Z}_I(\omega_0) \left[\boldsymbol{Z}_I^T(\omega_0) \boldsymbol{Z}_I(\omega_0) \right]^{-1} \boldsymbol{Z}_I^T(\omega_0) \boldsymbol{x}$$
(7)

and is also known as the nonlinear least squares (NLS) estimate.

 The ML/NLS estimator has been known since Quinn and Thomson (1991), but is costly to compute.

Maximum Likelihood Estimation

A Rew New

TRADRG UN

VERSIT

Maximum Likelihood Estimation

1. Compute NLS cost function

$$\hat{\omega}_{0} = \operatorname*{argmax}_{\omega_{0} \in (0,\pi/I)} \boldsymbol{x}^{T} \boldsymbol{Z}_{I}(\omega_{0}) \left[\boldsymbol{Z}_{I}^{T}(\omega_{0}) \boldsymbol{Z}_{I}(\omega_{0}) \right]^{-1} \boldsymbol{Z}_{I}^{T}(\omega_{0}) \boldsymbol{x}$$
(8)

BREANIN

on an *F*/*I*-point uniform grid for all model orders $I \in \{1, ..., L\}$.

Maximum Likelihood Estimation

1. Compute NLS cost function

$$\hat{\omega}_{0} = \operatorname*{argmax}_{\omega_{0} \in (0,\pi/I)} \boldsymbol{x}^{T} \boldsymbol{Z}_{I}(\omega_{0}) \left[\boldsymbol{Z}_{I}^{T}(\omega_{0}) \boldsymbol{Z}_{I}(\omega_{0}) \right]^{-1} \boldsymbol{Z}_{I}^{T}(\omega_{0}) \boldsymbol{x}$$
(8)

on an *F*/*I*-point uniform grid for all model orders $I \in \{1, ..., L\}$. 2. Optionally refine the *L* grid estimates.

Maximum Likelihood Estimation

1. Compute NLS cost function

$$\hat{\omega}_{0} = \operatorname*{argmax}_{\omega_{0} \in (0, \pi/I)} \boldsymbol{x}^{T} \boldsymbol{Z}_{I}(\omega_{0}) \left[\boldsymbol{Z}_{I}^{T}(\omega_{0}) \boldsymbol{Z}_{I}(\omega_{0}) \right]^{-1} \boldsymbol{Z}_{I}^{T}(\omega_{0}) \boldsymbol{x} \qquad (8)$$

on an *F*/*I*-point uniform grid for all model orders $I \in \{1, ..., L\}$.

- 2. Optionally refine the *L* grid estimates.
- 3. Do model comparison.

Maximum Likelihood Estimation

1. Compute NLS cost function

$$\hat{\omega}_{0} = \operatorname*{argmax}_{\omega_{0} \in (0, \pi/I)} \boldsymbol{x}^{T} \boldsymbol{Z}_{I}(\omega_{0}) \left[\boldsymbol{Z}_{I}^{T}(\omega_{0}) \boldsymbol{Z}_{I}(\omega_{0}) \right]^{-1} \boldsymbol{Z}_{I}^{T}(\omega_{0}) \boldsymbol{x} \qquad (8)$$

on an *F*/*I*-point uniform grid for all model orders $I \in \{1, ..., L\}$.

- 2. Optionally refine the *L* grid estimates.
- 3. Do model comparison.

Harmonic Summation

The harmonic summation (HS) estimator

$$\hat{\omega}_0 \approx \operatorname*{argmax}_{\omega_0 \in (0,\pi/I)} \boldsymbol{x}^T \boldsymbol{Z}_I(\omega_0) \left[\boldsymbol{N} \boldsymbol{I}_I / 2 \right]^{-1} \boldsymbol{Z}_I^T(\omega_0) \boldsymbol{x} .$$
(9)

Harmonic Summation

The harmonic summation (HS) estimator

$$\hat{\omega}_0 \approx \operatorname*{argmax}_{\omega_0 \in (0, \pi/I)} \boldsymbol{x}^T \boldsymbol{Z}_I(\omega_0) \left[\boldsymbol{N} \boldsymbol{I}_I / 2 \right]^{-1} \boldsymbol{Z}_I^T(\omega_0) \boldsymbol{x} .$$
(9)

Complexities

 $\begin{array}{ll} \mathsf{ML/NLS} & \mathcal{O}(F \log F) + \mathcal{O}(FL^3) \\ \mathsf{HS} & \mathcal{O}(F \log F) + \mathcal{O}(FL) \end{array}$

Harmonic Summation

The harmonic summation (HS) estimator

$$\hat{\omega}_0 \approx \operatorname*{argmax}_{\omega_0 \in (0,\pi/I)} \boldsymbol{x}^T \boldsymbol{Z}_I(\omega_0) \left[\boldsymbol{N} \boldsymbol{I}_I / 2 \right]^{-1} \boldsymbol{Z}_I^T(\omega_0) \boldsymbol{x} .$$
(9)

Complexities

 $\begin{array}{ll} \mathsf{ML/NLS} & \mathcal{O}(F \log F) + \mathcal{O}(FL^3) \\ \mathsf{HS} & \mathcal{O}(F \log F) + \mathcal{O}(FL) \end{array}$

Estimation accuracy for a high fundamental frequency

Estimation accuracy for a high fundamental frequency

Estimation accuracy for a high fundamental frequency

Estimation accuracy for a high fundamental frequency

Estimation accuracy for a low fundamental frequency

Estimation accuracy for a low fundamental frequency

Estimation accuracy for a low fundamental frequency

Estimation accuracy for a low fundamental frequency

When the fundamental frequency is not low (less than approx. 2 cycles/sample), HS and ML/NLS produce nearly the same estimates.

Summary So Far

- When the fundamental frequency is not low (less than approx. 2 cycles/sample), HS and ML/NLS produce nearly the same estimates.
- ► ML/NLS is much more accurate for low fundamental frequencies.

Summary So Far

- When the fundamental frequency is not low (less than approx. 2) cycles/sample), HS and ML/NLS produce nearly the same estimates.
- ML/NLS is much more accurate for low fundamental frequencies.
- ▶ For an *F*-point grid and a maximum candidate model order of *L*, the complexities of the grid search are
- ML/NLS $\mathcal{O}(F \log F) + \mathcal{O}(FL^3)$
 - HS $\mathcal{O}(F \log F) + \mathcal{O}(FL)$

Summary So Far

- When the fundamental frequency is not low (less than approx. 2 cycles/sample), HS and ML/NLS produce nearly the same estimates.
- ► ML/NLS is much more accurate for low fundamental frequencies.
- ► For an *F*-point grid and a maximum candidate model order of *L*, the complexities of the grid search are

 $\begin{array}{ll} \mathsf{ML/NLS} & \mathcal{O}(F \log F) + \mathcal{O}(FL^3) \\ \mathsf{HS} & \mathcal{O}(F \log F) + \mathcal{O}(FL) \end{array}$

Contribution ML/NLS: $O(F \log F) + O(FL)$

Fundamental Frequency Estimation Maximum Likelihood Estimation

Fast Maximum Likelihood Estimation

Results

Summary

Fast ML/NLS

$$J_{l}(\omega) = \boldsymbol{x}^{T} \boldsymbol{Z}_{l}(\omega_{0}) \left[\boldsymbol{Z}_{l}^{T}(\omega_{0}) \boldsymbol{Z}_{l}(\omega_{0}) \right]^{-1} \boldsymbol{Z}_{l}^{T}(\omega_{0}) \boldsymbol{x}$$
(10)

HEN GROUND

RSIT

FLOORG UT

Fast ML/NLS

$$J_{l}(\omega) = \boldsymbol{x}^{T} \boldsymbol{Z}_{l}(\omega_{0}) \left[\boldsymbol{Z}_{l}^{T}(\omega_{0}) \boldsymbol{Z}_{l}(\omega_{0}) \right]^{-1} \boldsymbol{Z}_{l}^{T}(\omega_{0}) \boldsymbol{x}$$
(10)

1. Solve $\boldsymbol{Z}_{l}^{T}(\omega_{0})\boldsymbol{Z}_{l}(\omega_{0})\boldsymbol{\alpha}_{l} = \boldsymbol{Z}_{l}^{T}(\omega_{0})\boldsymbol{x}$ efficiently for $\boldsymbol{\alpha}_{l}$.

Fast ML/NLS

$$J_{l}(\omega) = \boldsymbol{x}^{T} \boldsymbol{Z}_{l}(\omega_{0}) \left[\boldsymbol{Z}_{l}^{T}(\omega_{0}) \boldsymbol{Z}_{l}(\omega_{0}) \right]^{-1} \boldsymbol{Z}_{l}^{T}(\omega_{0}) \boldsymbol{x}$$
(10)

Solve Z^T_l(ω₀)Z_l(ω₀)α_l = Z^T_l(ω₀)x efficiently for α_l.
 Z^T_l(ω₀)x can be computed at the complexity of a single FFT.

$$J_{l}(\omega) = \boldsymbol{x}^{T} \boldsymbol{Z}_{l}(\omega_{0}) \left[\boldsymbol{Z}_{l}^{T}(\omega_{0}) \boldsymbol{Z}_{l}(\omega_{0}) \right]^{-1} \boldsymbol{Z}_{l}^{T}(\omega_{0}) \boldsymbol{x}$$
(10)

- 1. Solve $\boldsymbol{Z}_{l}^{T}(\omega_{0})\boldsymbol{Z}_{l}(\omega_{0})\boldsymbol{\alpha}_{l} = \boldsymbol{Z}_{l}^{T}(\omega_{0})\boldsymbol{x}$ efficiently for $\boldsymbol{\alpha}_{l}$.
- 2. $\mathbf{Z}_{I}^{T}(\omega_{0})\mathbf{x}$ can be computed at the complexity of a single FFT .
- 3. The coefficient matrix has a block Toeplitz-plus-Hankel structure

$$\boldsymbol{Z}_{I}^{T}(\omega_{0})\boldsymbol{Z}_{I}(\omega_{0}) = \begin{bmatrix} \boldsymbol{T}_{I}(\omega_{0}) & -\boldsymbol{\tilde{T}}_{I}(\omega_{0}) \\ \boldsymbol{\tilde{T}}_{I}(\omega_{0}) & \boldsymbol{T}_{I}(\omega_{0}) \end{bmatrix} + \begin{bmatrix} \boldsymbol{H}_{I}(\omega_{0}) & \boldsymbol{\tilde{H}}_{I}(\omega_{0}) \\ \boldsymbol{\tilde{H}}_{I}(\omega_{0}) & -\boldsymbol{H}_{I}(\omega_{0}) \end{bmatrix}$$
(11)

$$J_{l}(\omega) = \boldsymbol{x}^{T} \boldsymbol{Z}_{l}(\omega_{0}) \left[\boldsymbol{Z}_{l}^{T}(\omega_{0}) \boldsymbol{Z}_{l}(\omega_{0}) \right]^{-1} \boldsymbol{Z}_{l}^{T}(\omega_{0}) \boldsymbol{x}$$
(10)

- 1. Solve $\boldsymbol{Z}_{l}^{T}(\omega_{0})\boldsymbol{Z}_{l}(\omega_{0})\boldsymbol{\alpha}_{l} = \boldsymbol{Z}_{l}^{T}(\omega_{0})\boldsymbol{x}$ efficiently for $\boldsymbol{\alpha}_{l}$.
- 2. $\mathbf{Z}_{I}^{T}(\omega_{0})\mathbf{x}$ can be computed at the complexity of a single FFT.
- 3. The coefficient matrix has a block Toeplitz-plus-Hankel structure

$$\boldsymbol{Z}_{I}^{T}(\omega_{0})\boldsymbol{Z}_{I}(\omega_{0}) = \begin{bmatrix} \boldsymbol{T}_{I}(\omega_{0}) & -\boldsymbol{\tilde{T}}_{I}(\omega_{0}) \\ \boldsymbol{\tilde{T}}_{I}(\omega_{0}) & \boldsymbol{T}_{I}(\omega_{0}) \end{bmatrix} + \begin{bmatrix} \boldsymbol{H}_{I}(\omega_{0}) & \boldsymbol{\tilde{H}}_{I}(\omega_{0}) \\ \boldsymbol{\tilde{H}}_{I}(\omega_{0}) & -\boldsymbol{H}_{I}(\omega_{0}) \end{bmatrix}$$
(11)

4. The cost function $J_l(\omega)$ does not depend on the start index n_0 .

$$J_{l}(\omega) = \boldsymbol{x}^{T} \boldsymbol{Z}_{l}(\omega_{0}) \left[\boldsymbol{Z}_{l}^{T}(\omega_{0}) \boldsymbol{Z}_{l}(\omega_{0}) \right]^{-1} \boldsymbol{Z}_{l}^{T}(\omega_{0}) \boldsymbol{x}$$
(10)

- 1. Solve $Z_l^T(\omega_0)Z_l(\omega_0)\alpha_l = Z_l^T(\omega_0)\boldsymbol{x}$ efficiently for α_l .
- 2. $Z_{I}^{T}(\omega_{0})x$ can be computed at the complexity of a single FFT.
- 3. The coefficient matrix has a block Toeplitz-plus-Hankel structure

$$\boldsymbol{Z}_{I}^{T}(\omega_{0})\boldsymbol{Z}_{I}(\omega_{0}) = \begin{bmatrix} \boldsymbol{T}_{I}(\omega_{0}) & -\boldsymbol{\tilde{T}}_{I}(\omega_{0}) \\ \boldsymbol{\tilde{T}}_{I}(\omega_{0}) & \boldsymbol{T}_{I}(\omega_{0}) \end{bmatrix} + \begin{bmatrix} \boldsymbol{H}_{I}(\omega_{0}) & \boldsymbol{\tilde{H}}_{I}(\omega_{0}) \\ \boldsymbol{\tilde{H}}_{I}(\omega_{0}) & -\boldsymbol{H}_{I}(\omega_{0}) \end{bmatrix}$$
(11)

4. The cost function $J_l(\omega)$ does not depend on the start index n_0 . 5. If $n_0 = -(N-1)/2$, then $\tilde{T}_l(\omega_0) = \tilde{H}_l(\omega_0) = 0$, and

$$[\boldsymbol{T}_{l}(\omega_{0}) + \boldsymbol{H}_{l}(\omega_{0})] \boldsymbol{a}_{l}(\omega_{0}) = \bar{\boldsymbol{w}}_{l}(\omega_{0})$$
(12)

$$[\boldsymbol{T}_{l}(\omega_{0}) - \boldsymbol{H}_{l}(\omega_{0})] \boldsymbol{b}_{l}(\omega_{0}) = -\tilde{\boldsymbol{w}}_{l}(\omega_{0}).$$
(13)

where $\boldsymbol{Z}_{l}^{T}(\omega_{0})\boldsymbol{x} = [\boldsymbol{\bar{w}}_{l}^{T}(\omega_{0}), \boldsymbol{\tilde{w}}_{l}^{T}(\omega_{0})]^{T}$.

AND NEW GROUND

251

$$[\mathbf{T}_{l}(\omega_{0}) + \mathbf{H}_{l}(\omega_{0})] \, \mathbf{a}_{l}(\omega_{0}) = \bar{\mathbf{w}}_{l}(\omega_{0}) \tag{14}$$

Fast algorithms for Toeplitz-plus-Hankel: Reduces time complexity from O(l³) to O(l²) (Merchant and Parks (1982), Gohberg and Koltracht (1989), Kailath and Sayed (1995)).

$$[\mathbf{T}_{I}(\omega_{0}) + \mathbf{H}_{I}(\omega_{0})] \, \mathbf{a}_{I}(\omega_{0}) = \bar{\mathbf{w}}_{I}(\omega_{0}) \tag{14}$$

- Fast algorithms for Toeplitz-plus-Hankel: Reduces time complexity from O(I³) to O(I²) (Merchant and Parks (1982), Gohberg and Koltracht (1989), Kailath and Sayed (1995)).
- 7. The solutions to all upper-left subsystems of (14) is a solution to a lower order.

- Fast algorithms for Toeplitz-plus-Hankel: Reduces time complexity from O(l³) to O(l²) (Merchant and Parks (1982), Gohberg and Koltracht (1989), Kailath and Sayed (1995)).
- 7. The solutions to all upper-left subsystems of (14) is a solution to a lower order.
- 8. Thus, solving the system for I = L using a recursive Toeplitz-plus-Hankel solver gives the solutions for I = 1, ..., L - 1for free in the process.

- Fast algorithms for Toeplitz-plus-Hankel: Reduces time complexity from O(l³) to O(l²) (Merchant and Parks (1982), Gohberg and Koltracht (1989), Kailath and Sayed (1995)).
- 7. The solutions to all upper-left subsystems of (14) is a solution to a lower order.
- 8. Thus, solving the system for I = L using a recursive Toeplitz-plus-Hankel solver gives the solutions for I = 1, ..., L - 1for free in the process.
- 9. Solving (14) therefore has a time complexity of $\mathcal{O}(I)$ when we have the solution to (14) for I 1.

$$[\mathbf{T}_{l}(\omega_{0}) + \mathbf{H}_{l}(\omega_{0})] \, \mathbf{a}_{l}(\omega_{0}) = \bar{\mathbf{w}}_{l}(\omega_{0}) \tag{14}$$

- Fast algorithms for Toeplitz-plus-Hankel: Reduces time complexity from O(l³) to O(l²) (Merchant and Parks (1982), Gohberg and Koltracht (1989), Kailath and Sayed (1995)).
- 7. The solutions to all upper-left subsystems of (14) is a solution to a lower order.
- 8. Thus, solving the system for l = L using a recursive Toeplitz-plus-Hankel solver gives the solutions for l = 1, ..., L - 1for free in the process.
- 9. Solving (14) therefore has a time complexity of $\mathcal{O}(I)$ when we have the solution to (14) for I 1.
- 10. The total time complexity is reduced to

$$\mathcal{O}(F\log F) + \mathcal{O}(FL) \tag{15}$$

$$[\boldsymbol{T}_{l}(\omega_{0}) + \boldsymbol{H}_{l}(\omega_{0})] \boldsymbol{a}_{l}(\omega_{0}) = \bar{\boldsymbol{w}}_{l}(\omega_{0})$$
(16)

► We use the recursive solver by Gohberg and Koltracht (1989).

$$[\boldsymbol{T}_{l}(\omega_{0}) + \boldsymbol{H}_{l}(\omega_{0})] \boldsymbol{a}_{l}(\omega_{0}) = \bar{\boldsymbol{w}}_{l}(\omega_{0})$$
(16)

- ► We use the recursive solver by Gohberg and Koltracht (1989).
- Consists of a data independent and a data dependent step.

$$[\boldsymbol{T}_{l}(\omega_{0}) + \boldsymbol{H}_{l}(\omega_{0})] \boldsymbol{a}_{l}(\omega_{0}) = \bar{\boldsymbol{w}}_{l}(\omega_{0})$$
(16)

- ► We use the recursive solver by Gohberg and Koltracht (1989).
- Consists of a data independent and a data dependent step.
- The data independent step consists in solving

$$[\boldsymbol{T}_{l}(\omega_{0}) + \boldsymbol{H}_{l}(\omega_{0})] \gamma_{l}(\omega_{0}) = \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix}^{T} .$$
(17)
for $\gamma_{l}(\omega_{0})$ for $l = 1, ..., L$.

$$[\boldsymbol{T}_{l}(\omega_{0}) + \boldsymbol{H}_{l}(\omega_{0})] \boldsymbol{a}_{l}(\omega_{0}) = \bar{\boldsymbol{w}}_{l}(\omega_{0})$$
(16)

- ► We use the recursive solver by Gohberg and Koltracht (1989).
- Consists of a data independent and a data dependent step.
- The data independent step consists in solving

$$[\boldsymbol{T}_{l}(\omega_{0}) + \boldsymbol{H}_{l}(\omega_{0})] \boldsymbol{\gamma}_{l}(\omega_{0}) = \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix}^{T} .$$
(17)

for $\gamma_I(\omega_0)$ for I = 1, ..., L.

The data independent step can be computed off-line. Requires memory to store γ_l(ω₀) for all frequencies and model orders.

Fundamental Frequency Estimation Maximum Likelihood Estimation

Fast Maximum Likelihood Estimation

Results

Summary

Computation Time vs. Model Order

Computation Time vs. Model Order

Computation Time vs. Model Order

Setup: *N* = 200 (25 ms @ *f*_s = 8000 Hz), *F* = 5*NL*, T420 laptop

 τ (Standard ML) $\approx 60\tau$ (Fast ML) $\approx 150\tau$ (Faster ML) $\approx 500\tau$ (HS)

Computation Time vs. Data Size

Washing Machine Example Acoustic measurements by Brüel & Kjær

Washing Machine Example Acoustic measurements by Brüel & Kjær

- $f_{\rm s} = 44.1 \text{ kHz}$
- $f_{rs} = 4410$ Hz, 60 ms windows, 15/16 overlap, and L = 15

Washing Machine Example Acoustic measurements by Brüel & Kjær

*f*_s = 44.1 kHz
 Computation time: 28 s (50 % overlap: 3.8 s)
 *f*_{rs} = 4410 Hz, 60 ms windows, 15/16 overlap, and *L* = 15

Washing Machine Example Acoustic measurements by Brüel & Kjær

Estimated Fundamental Frequency

Washing Machine Example Acoustic measurements by Brüel & Kjær

Order Analysis

Fundamental Frequency Estimation Maximum Likelihood Estimation

Fast Maximum Likelihood Estimation

Results

Summary

The ML/NLS estimator works well for a low SNR and/or a low fundamental frequency.

- The ML/NLS estimator works well for a low SNR and/or a low fundamental frequency.
- Although the ML/NLS estimator has been known for at least 25 years, no algorithm with a complexity lower than

$$\mathcal{O}(F\log F) + \mathcal{O}(FL^3) \tag{18}$$

has been proposed for computing the fundamental frequency estimate on an F-point uniform grid for all model orders up to L.

- The ML/NLS estimator works well for a low SNR and/or a low fundamental frequency.
- Although the ML/NLS estimator has been known for at least 25 years, no algorithm with a complexity lower than

$$\mathcal{O}(F\log F) + \mathcal{O}(FL^3) \tag{18}$$

has been proposed for computing the fundamental frequency estimate on an *F*-point uniform grid for all model orders up to *L*.
We have proposed an algorithm that lower the complexity to

$$\mathcal{O}(F\log F) + \mathcal{O}(FL) \tag{19}$$

which is the same as that for harmonic summation.

- The ML/NLS estimator works well for a low SNR and/or a low fundamental frequency.
- Although the ML/NLS estimator has been known for at least 25 years, no algorithm with a complexity lower than

$$\mathcal{O}(F\log F) + \mathcal{O}(FL^3) \tag{18}$$

has been proposed for computing the fundamental frequency estimate on an F-point uniform grid for all model orders up to L.

We have proposed an algorithm that lower the complexity to

$$\mathcal{O}(F\log F) + \mathcal{O}(FL) \tag{19}$$

which is the same as that for harmonic summation.

For a typical configuration, simulation studies show that the proposed algorithm is approximately 60-150 faster than the standard algorithm and 4 – 10 times slower than harmonic summation.

Thanks for your attention!

