Power Dispatch and Load Control with Generation Uncertainty

Pedram Samadi, Shahab Bahrami, Vincent W.S. Wong, and Robert Schober

Department of Electrical and Computer Engineering

The University of British Columbia, Canada

December 16, 2015

・ロト ・ 同 ト ・ ヨ ト ・ ヨ

OUTLINE

- Introduction
- System Model
- Problem Formulation
- Performance Evaluation
- Conclusion

・ロト ・ 日 ・ ・ 日 ・ ・ 日

INTRODUCTION

- Using distributed generators (DGs) attracts more attention
 - DGs can provide environmental benefits by utilizing renewable energy resources (RERs) such as wind and solar
 - Install new transmission and bulk generation infrastructure is expensive
- In systems with high penetration of RERs
 - Generation may exceed the demand
 - The reverse power flow back to the substation can cause the voltage rise problem

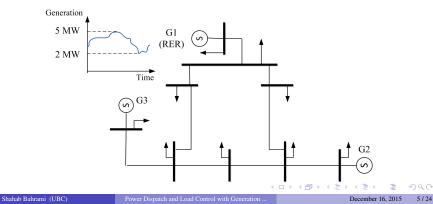
MOTIVATIONS

- It is a challenge to cope with the undesirable variations of voltage due to the random nature of RERs
- It is a challenge to economically dispatch the output power of RERs and conventional DGs
 - RER generation may exceed the presumed level
 - Formulate an optimal power flow (OPF) problem such that a risk level of RER generation surplus will not exceed a certain threshold
- It is also a challenge to control flexible loads in the system to better match supply and demand
 - Adopt demand response (DR) programs to shape the load pattern of the users to provide voltage regulation services

・ロト ・ 同ト ・ モト ・ モト

EXAMPLE

- For conventional DGs, the best solution obtained from the OPF may be 2.5 MW, 4MW, 5MW for generator 1, 2 and 3, respectively
- If generator 1 is RER and its output power varies between 2 MW and 5 MW randomly, then it may have generation surplus
- To minimize the risk level of the RER generation surplus, the OPF solution may change to 3.5 MW, 3.5 MW, 4.5 MW for instance



RELATED WORK

- Ruiz *et al.* (2010) proposed a direct load control algorithm to select the start time and the duration of the residential appliances' control actions
- Lavaei et al. (2012) formulated the OPF problem as a SDP
 - Provided the sufficient conditions to ensure the existence of a global optimum for the OPF problem in ac grids
- Dall'Anese et al. (2015) studied an OPF problem
 - The risk level of PV generation surplus will not exceed a certain threshold
 - Adopted the concept of conditional value-at-risk (CVaR) to capture the risk of having over-voltage

CONTRIBUTIONS

- Consider the problem of power dispatch and load scheduling of the users
 - Distributed network operator (DNO) is responsible to determine the optimal generation level of the generators and control the flexible loads
- Adopt a semidefinite programming (SDP) relaxation to solve an OPF problem
 - Minimize the generation cost and the discomfort cost of the users
- Schedule the power consumption of the users to better match supply and demand
- Apply the concept of CVaR to minimize the risk of having generation deviation

SYSTEM MODEL

- Consider a power system with $N \triangleq |\mathcal{N}|$ buses and $L \triangleq |\mathcal{L}|$ lines
 - ► Set of buses: *N*
 - Set of lines: $\mathcal{L} \subseteq \mathcal{N} \times \mathcal{N}$
- The operation cycle is divided into $T \triangleq |\mathcal{T}|$ time slots
 - Set of time slots: $\mathcal{T} = \{1, \dots, T\}$
- V_t^n is defined as the complex voltage of bus n at time slot t, and $\mathbf{V}_t \triangleq (V_t^1, \dots, V_t^N)$
- Define $\mathbf{X}_t \triangleq \left[\text{Re}\{\mathbf{V}_t\}^{\text{T}}, \text{Im}\{\mathbf{V}_t\}^{\text{T}} \right]^{\text{T}}$
- Define $\mathbf{W}_t \triangleq \mathbf{X}_t \mathbf{X}_t^{\mathrm{T}}$
- We have $rank(\mathbf{W}_t) = 1$

System Model (cont.)

• The following relations hold for all $n \in \mathcal{N}$, $(n,m) \in \mathcal{L}$, and $t \in \mathcal{T}$

$$P_{n,t}^G - P_{n,t}^D = \operatorname{Tr}\{\mathbf{Y}_n \mathbf{W}_t\},\tag{1a}$$

$$Q_{n,t}^G - Q_{n,t}^D = \operatorname{Tr}\{\bar{\mathbf{Y}}_n \mathbf{W}_t\},\tag{1b}$$

$$P_{nm,t} = \operatorname{Tr}\{\mathbf{Y}_{n,m}\mathbf{W}_t\},\tag{1c}$$

$$|S_{nm,t}|^2 = \operatorname{Tr}\{\mathbf{Y}_{nm}\mathbf{W}_t\}^2 + \operatorname{Tr}\{\bar{\mathbf{Y}}_{nm}\mathbf{W}_t\}^2,$$
(1d)

$$|V_t^n|^2 = \operatorname{Tr}\{\mathbf{M}_n \mathbf{W}_t\}.$$
 (1e)

Image: A math the second se

• Matrices \mathbf{Y}_n , $\bar{\mathbf{Y}}_n$, $\mathbf{Y}_{n,m}$, $\bar{\mathbf{Y}}_{nm}$ and \mathbf{M}_n are determined from the elements of admittance matrix Y

System Model (cont.)

• The voltage and power values are subject to the power balance equations and physical constraints at all time slots

$$P_{n,t}^{G,\min} - P_{n,t}^{D} \le \operatorname{Tr}\{\mathbf{Y}_{n}\mathbf{W}_{t}\} \le P_{n,t}^{G,\max} - P_{n,t}^{D},$$
(2a)

$$Q_{n,t}^{G,\min} - Q_{n,t}^D \le \operatorname{Tr}\{\bar{\mathbf{Y}}_n \mathbf{W}_t\} \le Q_{n,t}^{G,\max} - Q_{n,t}^D,$$
(2b)

$$\operatorname{Tr}\{\mathbf{Y}_{nm}\mathbf{W}_t\} \le P_{nm}^{\max},\tag{2c}$$

$$\operatorname{Tr}\{\mathbf{Y}_{nm}\mathbf{W}_{t}\}^{2} + \operatorname{Tr}\{\bar{\mathbf{Y}}_{nm}\mathbf{W}_{t}\}^{2} \le (S_{nm}^{\max})^{2},$$
(2d)

$$(V_n^{\min})^2 \le \operatorname{Tr}\{\mathbf{M}_n \mathbf{W}_t\} \le (V_n^{\max})^2.$$
(2e)

• DNO can remotely control the operation of some appliances of the user at bus n

$$P_{n,t}^{D,\min} \le P_{n,t}^{D} \le P_{n,t}^{D,\max},$$
 (3a)

$$Q_{n,t}^{D,\min} \le Q_{n,t}^{D} \le Q_{n,t}^{D,\max},\tag{3b}$$

$$0 \le E_n \le \sum_{t \in \mathcal{T}} P_{n,t}^D, \tag{3c}$$

・ロト ・ 同ト ・ モト ・ モト

where E_n denotes the total energy requirement of the load connected to bus n

System Model (cont.)

- We consider a quadratic cost function $C_n(P_{n,t}^G) = a_n(P_{n,t}^G)^2 + b_n(P_{n,t}^G) + c_n$
- Substituting $P_{n,t}^G P_{n,t}^D = \text{Tr}\{\mathbf{Y}_n \mathbf{W}_t\}$

$$C_{n}(\mathbf{W}_{t}, P_{n,t}^{D}) = a_{n}(\mathrm{Tr}\{\mathbf{Y}_{n}\mathbf{W}_{t}\} + P_{n,t}^{D})^{2} + b_{n}(\mathrm{Tr}\{\mathbf{Y}_{n}\mathbf{W}_{t}\} + P_{n,t}^{D}) + c_{n}.$$
(4)

- $L_{n,t}$ denotes the *desired level* of power consumption at bus n at time slot t
- We assume a quadratic dissatisfaction cost function as

$$H_{n,t}(P_{n,t}^D) = \theta_{n,t}(P_{n,t}^D - L_{n,t})^2,$$
(5)

where $\theta_{n,t}$ is a non-negative constant

イロン イロン イヨン イヨン

PROBLEM FORMULATION

• The SDP relaxation form of the OPF problem obtained by relaxing the rank constraint

$$\begin{array}{ll} \underset{\mathbf{W}_{t}, S_{n,t}^{D}, \\ \lambda_{n,t}, \gamma_{n,t}, \\ t \in \mathcal{T}, n \in \mathcal{N} \end{array}}{\text{subject to}} & \sum_{t \in \mathcal{T}} \sum_{n \in \mathcal{N}} \lambda_{n,t} + \gamma_{n,t} \end{aligned} \tag{6a} \\ \begin{array}{ll} & \text{subject to} & C_{n}(\mathbf{W}_{t}, P_{n,t}^{D}) \leq \lambda_{n,t}, \\ & \text{for } H_{n,t}(P_{n,t}^{D}) \leq \gamma_{n,t}, \\ & \text{for } P_{n,t}^{G,\min} - P_{n,t}^{D} \leq \operatorname{Tr}\{\mathbf{Y}_{n}\mathbf{W}_{t}\} \leq P_{n,t}^{G,\max} - P_{n,t}^{D}, \\ & Q_{n,t}^{G,\min} - Q_{n,t}^{D} \leq \operatorname{Tr}\{\bar{\mathbf{Y}}_{n}\mathbf{W}_{t}\} \leq Q_{n,t}^{G,\max} - Q_{n,t}^{D}, \\ & \operatorname{Tr}\{\mathbf{Y}_{nm}\mathbf{W}_{t}\} \leq P_{nm}^{\max}, \\ & \operatorname{Tr}\{\mathbf{Y}_{nm}\mathbf{W}_{t}\}^{2} + \operatorname{Tr}\{\bar{\mathbf{Y}}_{nm}\mathbf{W}_{t}\}^{2} \leq (S_{nm}^{\max})^{2}, \\ & (\mathbf{6b}) \\ & P_{n,t}^{D,\min} \leq P_{n,t}^{D} \leq P_{n,t}^{D,\max}, \\ & (\mathbf{6b}) \\ & Q_{n,t}^{D,\min} \leq Q_{n,t}^{D,\max} \leq Q_{n,t}^{D,\max}, \\ & (\mathbf{6c}) \\ & Q_{n,t}^{D,\min} \leq Q_{n,t}^{D,\max} \leq Q_{n,t}^{D,\max}, \\ & (\mathbf{6c}) \\ & Q_{n,t}^{D,\min} \leq Q_{n,t}^{D,\max} \leq Q_{n,t}^{D,\max}, \\ & (\mathbf{6c}) \\ & Q_{n,t}^{D,\min} \leq Q_{n,t}^{D,\max} \leq Q_{n,t}^{D,\max}, \\ & (\mathbf{6c}) \\ & Q_{n,t}^{D,\min} \leq Q_{n,t}^{D,\max} \leq Q_{n,t}^{D,\max}, \\ & (\mathbf{6c}) \\ & Q_{n,t}^{D,\min} \leq Q_{n,t}^{D,\max} \leq Q_{n,t}^{D,\max}, \\ & (\mathbf{6c}) \\ & Q_{n,t}^{D,\min} \leq Q_{n,t}^{D,\max} \end{cases} \end{aligned}$$

• Constraint $\text{Tr}\{\mathbf{Y}_{nm}\mathbf{W}_t\}^2 + \text{Tr}\{\bar{\mathbf{Y}}_{nm}\mathbf{W}_t\}^2 \leq (S_{nm}^{\max})^2$ can be replaced by

$$\begin{bmatrix} (S_{nm}^{\max})^2 & \operatorname{Tr}\{\mathbf{Y}_{nm}\mathbf{W}_t\} \operatorname{Tr}\{\bar{\mathbf{Y}}_{nm}\mathbf{W}_t\} \\ \operatorname{Tr}\{\mathbf{Y}_{nm}\mathbf{W}_t\} & -1 & 0 \\ \operatorname{Tr}\{\bar{\mathbf{Y}}_{nm}\mathbf{W}_t\} & 0 & -1 \end{bmatrix} \leq 0.$$
(7)

• Constraints $C_n(\mathbf{W}_t, P_{n,t}^D) \leq \lambda_{n,t}$ and $H_{n,t}(P_{n,t}^D) \leq \gamma_{n,t}$ can be replaced by

$$\begin{bmatrix} b_n \delta_{n,t} - \lambda_{n,t} + c_n & \sqrt{a_n} \delta_{n,t} \\ \sqrt{a_n} \delta_{n,t} & -1 \end{bmatrix} \preceq 0,$$
(8a)

$$\begin{bmatrix} -2L_{n,t}P_{n,t}^{D} + L_{n,t}^{2} - \gamma_{n,t}/\theta_{n,t} & P_{n,t}^{D} \\ P_{n,t}^{D} & -1 \end{bmatrix} \preceq 0,$$
(8b)

where $\delta_{n,t} \triangleq \text{Tr}\{\mathbf{Y}_n \mathbf{W}_t\} + P_{n,t}^D$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ

• Therefore, OPF problem can be reformulated as

$$\begin{array}{ll} \underset{\substack{\mathbf{W}_{t}, S_{n,t}^{D}, \\ \lambda_{n,t}, \gamma_{n,t}, \\ t \in \mathcal{T}, n \in \mathcal{N}}}{\text{minimize}} & \sum_{t \in \mathcal{T}} \sum_{n \in \mathcal{N}} \lambda_{n,t} + \gamma_{n,t} \\ \text{subject to} & \text{linear matrix inequality constraints} \end{array}$$
(9a)

• The question is how to tackle the uncertainty in the RERs' generation?

・ロト ・ 日 ・ ・ ヨ ・ ・

- To tackle the voltage variation problem, one option is to add a barrier term to the objective function which penalizes any voltage deviation
- Examples of such barrier functions include value at risk (VaR) and CVaR
- Voltage variation can be indirectly related to the fluctuations in the RERs' power generation
- $\hat{\mathbf{P}}_t \triangleq (\hat{P}_{1,t}, \dots, \hat{P}_{N,t})$ is the vector of presumed values of the output power generation obtained from solving the OPF
- $\mathbf{P}^G_t \triangleq (P^G_{1,t}, \dots, P^G_{N,t})$ is the vector of the actual power generation
- We define $R(\cdot)$ as

$$R(\mathbf{P}_t^G, \hat{\mathbf{P}}_t) = \sum_{n \in \mathcal{N}} \left[P_{n,t}^G - \hat{P}_{n,t} \right]^+,$$
(10)

where $[\cdot]^+ \triangleq \max\{\cdot, 0\}$

<ロ> <四> <四> <四> <四> <四> <四> <四> <四> <四</p>

• $R(\cdot)$ is a random variable with the following cumulative distribution function

$$\Psi(\hat{\mathbf{P}}_t, \alpha) \triangleq \Pr\{R(\mathbf{P}_t^G, \hat{\mathbf{P}}_t) \le \alpha\}.$$
(11)

• For the probability level $\beta \in (0, 1)$, the corresponding VaR, α_{β} , is defined as

$$\alpha_{\beta}(\hat{\mathbf{P}}_{t}) \triangleq \min\{\alpha : \Psi(\hat{\mathbf{P}}_{t}, \alpha) \ge \beta\}.$$
(12)

- It is the minimum threshold α for which the probability of voltage deviation from its nominal value being less than α is at least β
- For example, when $\beta = 0.95$, then VAR = 0.1 pu means with probability of 0.95 the voltage deviation is less than 0.1 pu
- CVaR is defined as

$$\phi_{\beta}(\hat{\mathbf{P}}_{t}) = \mathbb{E}\{R(\mathbf{P}_{t}^{G}, \hat{\mathbf{P}}_{t}) : R(\mathbf{P}_{t}^{G}, \hat{\mathbf{P}}_{t}) \ge \alpha_{\beta}(\hat{\mathbf{P}}_{t})\}.$$
(13)

• CVaR can also be represented as $\phi_{\beta}(\hat{\mathbf{P}}_t) = \min_{\alpha \in \mathbb{R}} \Gamma_{\beta}(\alpha, \hat{\mathbf{P}}_t)$, where

$$\Gamma_{\beta}(\alpha, \hat{\mathbf{P}}_{t}) \triangleq \alpha + \frac{1}{1-\beta} \int \left[R(\mathbf{P}_{t}^{G}, \hat{\mathbf{P}}_{t}) - \alpha \right]^{+} \rho(\mathbf{P}_{t}^{G}) d\mathbf{P}_{t}^{G},$$
(14)

and $\rho(\mathbf{P}_t^G)$ is the probability density function of random vector \mathbf{P}_t^G

- CVaR is convex in P
 ^t, and for any threshold α, it is always greater than or equal to the VaR
 - Minimizing the CVaR results in having a low VaR as well
- It is possible to estimate the CVaR by adopting sample average technique
- Considering the set $\mathcal{K} \triangleq \{1, \dots, K\}$ of K samples of the random vector \mathbf{P}_t^G

$$\hat{\Gamma}_{\beta}(\alpha, \hat{\mathbf{P}}_t) = \alpha + \frac{1}{K(1-\beta)} \sum_{k \in \mathcal{K}} \left[R(\mathbf{P}_t^{G,k}, \hat{\mathbf{P}}_t) - \alpha \right]^+.$$
(15)

イロン 不良 とくほど 不良 とうほ

• Taking into account the uncertainty about the generation

$$\begin{array}{l} \underset{\mathbf{W}_{t}, S_{n,t}^{D}, \lambda_{n,t}, \\ \gamma_{n,t}, \alpha, \hat{\mathbf{P}}_{t}, \\ t \in \mathcal{T}, n \in \mathcal{N} \end{array}}{\text{minimize}} \sum_{t \in \mathcal{T}} \sum_{n \in \mathcal{N}} \left(\lambda_{n,t} + \gamma_{n,t} \right) + \eta_{t} \hat{\Gamma}_{\beta}(\alpha, \hat{\mathbf{P}}_{t}) \tag{16a}$$

subject to linear matrix inequality constraints, (16b)

where η_t is a positive weighting coefficient

- Auxiliary vector $\boldsymbol{\mu}_t \in \mathbb{R}^K$ is introduced for $\left[R(\mathbf{P}_t^{G,k}, \hat{\mathbf{P}}_t) \alpha \right]^+$
- $\bullet~$ The vector of auxiliary variables $\mathbf{u}_t^k \in \mathbb{R}^N$ are introduced for each sample k

$$\begin{array}{ll} \underset{\mathbf{W}_{t},S_{n,t}^{D},\lambda_{n,t},,}{\min} & \sum_{t \in \mathcal{T}} \sum_{n \in \mathcal{N}} (\lambda_{n,t} + \gamma_{n,t}) + \eta_{t} \alpha + \frac{\eta_{t}}{K(1-\beta)} \mathbf{1}_{K}^{T} \boldsymbol{\mu}_{t} & (17a) \\ \gamma_{n,t},\alpha,\hat{\mathbf{P}}_{t},\\ \boldsymbol{\mu}_{t},\mathbf{u}_{t}^{k},k \in \mathcal{K},\\ t \in \mathcal{T},n \in \mathcal{N} & \\ \end{array}$$
subject to linear matrix inequality constraints, (17b)
$$\mathbf{1}_{N}^{T} \mathbf{u}_{t}^{k} \leq \alpha + \mu_{t}^{k}, & (17c) \\ P_{n,t}^{G,k} - \hat{P}_{n,t}^{k} \leq u_{n,t}^{k}. & (17d) \\ \end{array}$$

Algorithm

• $\mathbf{W}_t^{\text{opt}}$ is at most rank two for practical ac grids such as the IEEE test systems

Algorithm 1 determines the voltage of buses.

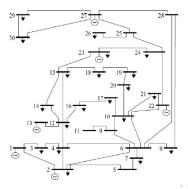
- 1: Solve problem (17)
- 2: if $\mathbf{W}_t^{\text{opt}}$ is rank one with eigenvalue r and eigenvector $\boldsymbol{\nu}$
- 3: Calculate $\mathbf{X}_t^{\text{opt}} = \sqrt{r}\boldsymbol{\nu}$.
- 4: else if $\mathbf{W}_t^{\text{opt}}$ is rank two with two nonzero eigenvalues r_1 and r_2 and corresponding eigenvectors $\boldsymbol{\nu}_1$ and $\boldsymbol{\nu}_2$
- 5: Calculate rank one matrix $\hat{\mathbf{W}}_t^{\text{opt}} = (r_1 + r_2)\boldsymbol{\nu}_1\boldsymbol{\nu}_2^{\text{T}}$.
- 6: Calculate eigenvalue \hat{r} and eigenvector $\hat{\nu}$ of $\hat{\mathbf{W}}_t^{\text{opt}}$.
- 7: Calculate $\mathbf{X}_t^{\text{opt}} = \sqrt{\hat{r}}\hat{\boldsymbol{\nu}}$.

8: end if

イロト 不得 とくほ とくほう

PERFORMANCE EVALUATION

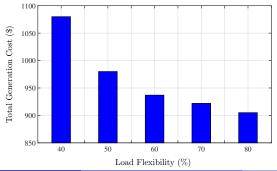
- The IEEE 30-bus network is considered as a test case
- Some of the buses in the network are equipped with RERs (wind and solar)
- To estimate the CVaR, we use the sample average technique with K = 100 samples of power generation
- The operation period is divided into 3 time slots representing on-peak hours, off-peak hours, and mid-peak hours



< A >

PERFORMANCE EVALUATION (CONT.)

- Simulation results for the total generation cost of the system for different levels of load flexibility
- Load flexibility is defined as the percentage of the desired level of load in each time slot that can be reduced or increased. That is, $\chi_{n,t} \triangleq \Delta P_{n,t}^D / P_{n,t}^D \times 100\%$, where $\Delta P_{n,t}^D$ is the amount of power demand that can be adjusted
- The generation cost reduces when the DNO can shift more load from peak hours to off-peak hours



PERFORMANCE EVALUATION (CONT.)

- Simulation results for the expected voltage values for different values of parameter η_t
- By increasing the parameter η_t, the voltage variations are reduced as more weights are put on minimizing the risk of having high voltage values

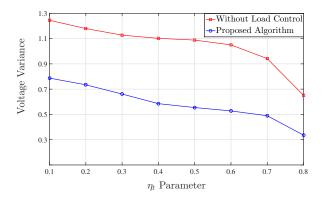


Image: A math the second se

CONCLUSION

- We formulated an optimization problem to minimize the generation cost and the discomfort cost subject to power flow constraints for the equivalent circuit of the power system
- We adopted an SDP relaxation technique to solve the OPF problem
- The risk of having high voltage values was also minimized by including a barrier term based on CVaR in the objective function
- Our proposed algorithm reduces the generation cost and better eliminates the mismatch between the supply and demand

Thank you for your attention!

<ロト < 回 > < 回 > < 回 >