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SUMMARY

d Template based automatic segmentation of unit-database for TTS — into phonetic and syllabic units
d Proposed ‘template’ based — a) Seeded forced alignment and b) Seedless iterative segmental K-means (SKM)
d Compared with a) Seeded HMM, b) Seedless SKM-HMM on TIMIT — with phonetic ‘ground truth’ segmentation
1 Applied for ‘syllabic’ segmentation of an Indian language ‘Tamil’
d Proposed 4 methods compared with 3 other methods a) Festival EHMM, b) Group-Delay semi-automatic, c¢) Hybrid

" |In terms of a) segmentation error statistics and b) objective TTS quality measure using ‘spectral distortion’

» Template based methods shown comparable / better than other approaches

Template based automatic segmentation

speaker-recognition. But not yet for “segmentation” for TTS

 Can yield high degree of matching with test data > hence potential to yield

J Non-parametric model of a unit > Feature vector sequence retained as it is
J Represents temporal content of a speech unit = high-resolution
J Template modeling = Used extensively in speech coding, speech recognition,

high-resolution segmentation - for TTS Unit-Database Segmentation

Main dimensions of “unit” modeling for segmentation
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SEGMENTATION PERFORMANCE ON TIMIT

125 speakers — 1000 sentences — use segmentation error
statistics with respect to ground truth for ‘phonetic’ segmentation
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SYLLABIC SEGMENTATION OF INDIAN LANGUAGE “TAMIL”
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syllabic segmentation as ground-truth

SKM-Template offers performance close to Hybrid (syllable-conditioned, phone-
HMM re-estimation), while being seedless and less complex. Template offers
comparable performance (with small seeding). EHMM, HMM10, SKM-HMM poor.

SYNTHESIS AND DOUBLE-ENDED OBJECTIVE MEASURE
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“spectral-distortion” (SD) between IN-
DB and OUT-DB reference speech

[ ISKM-Tempiate
and synthesized speech (1dB =
transparent quality — in speech coding)

Jd For all 7 segmentation techniques IIII

1 IN-DB performs close to 1.5 dB SD -

J OUT-DB performs close to 4 dB SD  Database (N-08) Outof Database (OUT-06)

= Hybrid the best, All others bunch closely, Template and SKM-Template comparable or better
= Use limited modeling data (seed / seedless) and are less complex than Hybrid and EHMM
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