Bandlimited Field Reconstruction from Samples obtained on a Discrete Grid with Unknown Random Locations

Ankur Mallick, Animesh Kumar Electrical Engineering Indian Institute of Technology Bombay

Motivation - Spatial Sampling

• Consider the problem of estimating a spatially varying field over a large area (For eg. Temperature)

Temperature distribution in London, August 2003

Source: http://climatelondon.org.uk/

Standard Approach

- The usual procedure is to estimate the number of degrees of freedom of the field
- If there are 'N' degrees of freedom, 'N' samples are taken and the corresponding system of equations is solved

Source: http://climatelondon.org.uk/

Localization of Sensors is Challenging

- Localization algorithms or GPS equipment required to estimate the coordinates of the sensors is expensive – especially if the number of sensors is large
- The location information obtained might be unreliable since sensor positions are liable to perturbations in spatial sampling

Temperature distribution in London, August 2003

Source: http://climatelondon.org.uk/

Benefits of Location Unaware Sensors

Data Processing Unit X - Location unaware Sensor

- Reduced cost of sensor deployment
- Lower amount of data to be transmitted
- Masking of sensor locations prevents the location from being detected even if the data is intercepted

- Consider the 1D version of the spatial sampling problem
- g(t) is a smooth bandlimited, periodic field (one period is shown)
- Assuming the period to be 1:

$$g(t) = \sum_{k=-b}^{b} a[k] \exp(j2\pi kt)$$

Distributed Sampling Setup

- Sensors are deployed at **unknown** locations $T_1, T_2, ..., T_n$ obtained according to a *random distribution*
- The ordering of the locations is also unknown
- The goal is to estimate the field using the sample values and the *distribution* on the sensor locations

Assumption on Sensor Deployment

- The problem where sensors are deployed according to a continuous distribution is non-linear and hence difficult to solve
- We will address a simplified version of the problem where the sensors are located at a random point on a **discrete grid**

Sampling Model

- $s_b = \frac{1}{(2b+1)}$ (Spacing Parameter)
- (2*b*+1) grid points: {0, s_b,2s_b,...2bs_b)
- Consider any sensor deployed at location *T* according to the distribution *p(t)*: *T=is_b* w.p. *p_i* (*i* = 0,1,...,2*b*)
- Sensor location, i.e. the index 'i' is unknown and oversampling is used to overcome location unawareness

Performance Criterion

- $g(t) = \sum_{k=-b}^{b} a[k] \exp(j2\pi kt)$
- The field has 2*b*+1 degrees of freedom
- Correct detection of the 2b+1 field values, g(is_b), corresponds to correct estimation of the field
- We wish to detect the field correctly with a high probability
- Hence detection error probability is the performance criterion to be minimized

Main Result

- $g(t) = \sum_{k=-b}^{b} a[k] \exp(j2\pi kt)$
- Detection error probability depends on the distribution on the sensor locations, p(t)
- p(t) is assumed to be discrete and asymmetric
- The main result of our work is to find the optimal such p(t) that minimizes the detection error probability of any field g(t)

Field Detection Algorithm

•

•

•

•

-Sensors The field detection algorithm g(t)has 2 steps Step 1: Clustering Samples $2bs_{k}$ 0 S_b Step 2: Assigning Locations to p(t)Clusters p_{2b} Additional assumption: $p_0 < p_1 < p_2 < \dots < p_{2b}$ p_1 p_0 0 $2bs_{h}$ S_b 1

- All samples of equal value are put in the same cluster ('Value' of the cluster = Value of any sample in the cluster)
- Since there are 2b+1 distinct sample values we form (2b+1) clusters

- All samples of equal value are put in the same cluster ('Value' of the cluster = Value of any sample in the cluster)
- Since there are 2b+1 distinct sample values we form (2b+1) clusters

Assigning Locations to Clusters

- 'Type' of cluster = Number of elements in the cluster
- Clusters are sorted according to type
- 'Value' of cluster with smallest 'Type' is assigned to g(0), next smallest to $g(s_b)$, and so on till $g(2bs_b)$ (since $p_0 < p_1 < ... < p_{2b}$)
- Consider the following illustration for the case where b=2 and so there are 2b+1=5 clusters:

Assigning Locations to Clusters

- 'Type' of cluster = Number of elements in the cluster
- Clusters are sorted according to type
- 'Value' of cluster with smallest 'Type' is assigned to g(0), next smallest to $g(s_b)$, and so on till $g(2bs_b)$ (since $p_0 < p_1 < ... < p_{2b}$)
- Consider the following illustration for the case where b=2 and so there are 2b+1=5 clusters:

Illustrative Example

• Consider a field g(t) as shown below with b=1, $s_b=1/3$ which is sampled n=10 times

Cluster	Value	Туре
1	1.06	2
2	1.80	3
3	0.14	5

- Conclusion: g(0)=1.06, g(1/3)=1.80, g(2/3)=0.14
- Field is detected correctly

Illustrative Example

• Consider a field g(t) as shown below with b=1, $s_b=1/3$ which is sampled n=10 times

g(t) • - Sensors	1.06
1.80 1.06 0.14 Samples=	0.14 1.06 1.80 0.14
0 1/3 2/3 <i>t</i>	1.80 1.06 0.14 0.14

Cluster	Value	Туре
1	1.80	2
2	1.06	3
3	0.14	5

- Conclusion: g(0)=1.80, g(1/3)=1.06, g(2/3)=0.14
- Field is detected incorrectly

What if the field values at 2 sensor locations are equal?

- All samples of the same value are grouped in the same cluster
- If field value is equal any 2 of the 2b+1 grid points then all the samples from these points go into the same cluster and we will have less than 2b+1 clusters
- If we assume the signal value to be equal at grid points '0' and 's_b' to be equal then : $\sum_{k=-b}^{b} a[k](exp(j2\pi k(0)) - exp(j2\pi k(s_b))) = 0$

To satisfy this one of the Fourier series coefficients, a[k], is constrained to a fixed value

 If Fourier Series coefficients of a natural signal are instances of independent, continuous random variables then this occurs with probability zero

Detection Error Probability

- Let N_i be the 'type' of the cluster corresponding to g(is_b) (i.e samples from location is_b) in a set of 'n' samples
- Our field detection algorithm is based on the assumption that 0 < N₀ < N₁ < ... < N_{2b} because 0 < p₀ < p₁ < ... < p_{2b}
- Probability of detection error $(P_e) = P((0 < N_0 < N_1 < ... < N_{2b})^c)$
- It can be shown from the union bound that: $M \leq P_e \leq (2b+1)M$ $M = max(P(N_0 = 0), P(N_0 \geq N_1), P(N_1 \geq N_2), \dots, P(N_{2b-1} \geq N_{2b}))$
- It is known from Sanov's Theorem (analogous to the Chernoff Bound) that each term in M decays exponentially with an increase in 'n'
- Thus the distribution $p = (p_0, p_1, \dots, p_{2b})$ that minimizes M, also minimizes P_e

Deriving the Main Result

- $M = max(P(N_0 = 0), P(N_0 \ge N_1), P(N_1 \ge N_2), ..., P(N_{2b-1} \ge N_{2b}))$
- $P(N_0 = 0) = (1 p_0)^n$
- $P(N_0 \ge N_1) \propto 2^{-nD^*}$ (From Sanov's Theorem) where $D^* = min \sum_{i=0}^{2b} \frac{N_i}{n} \log_2 \frac{N_i}{np_i}$, subject to $\sum_{i=0}^{2b} N_i = n$ and $N_1 \le N_0$
- The other terms in *M* can be calculated as a function of *p* in similar fashion
- Minimizing M with respect to p (equivalent to minimizing P_e with respect to p) gives the following distribution:

$$p_i = \frac{3(i+1)^2}{(b+1)(2b+1)(4b+3)} \text{ for } 0 \le i \le 2b$$

 This is the distribution that gives minimum detection error probability for our field detection algorithm

Simulation Setup

- Field being estimated: $g(t) = \sum_{k=-b}^{b} a[k] \exp(j2\pi kt)$ (b = 4 is assumed)
- a[k]'s are generated using a uniform random number generator (Table 1) with a[-k] =(a[k])* for real valued fields (conjugate symmetry)
- Number of samples collected ('n') is increased from 100 to 20,000
- The empirical detection error probability for various distributions (Table 2) on the sensor locations is simulated using 10,000 Monte-Carlo trials

Coefficient	Value	Distribution Type	$p = [p_0, p_1, \dots, p_{2b}]$
<i>a</i> [0]	1	Random	$\alpha_{l}[U(1), U(2), \dots, U(2b+1)]^{*}$
<i>a</i> [1]	0.9134 - <i>j</i> 0.5469	Linear	$\alpha_2[1,2,,2b+1]$
<i>a</i> [2]	0.1270 - <i>j</i> 0.2785	Cubic	$\alpha_3[1,8,,(2b+1)^3]$
<i>a</i> [3]	0.9058 - <i>j</i> 0.0975	Optimal	α_4 [1,4,,(2 <i>b</i> +1) ²]
<i>a</i> [4]	0.8147 - <i>j</i> 0.6324	*U(k)'s are ordered uniform random variables	

Table 1

Simulation Results

- We use a log-log plot since the P_e decays exponentially with n and we are interested in modeling the exponent
- Each plot ends when the empirical detection error probability becomes zero or the maximum sample size (n = 20000) is reached
- It is observed that the estimated optimal distribution decays fastest and has the smallest empirical detection error probability

Extension to the 2D case

- In the 1 dimensional case the signal had 2b+1 degrees of freedom and hence we sampled it at 2b+1 grid points
- Similarly in the 2D case, if the signal has 'N' degrees of freedom it is sampled at 'N' grid points
- Sensors are deployed according to an asymmetric distribution and the location on the grid where the sensor lands is unknown

Future Work

- Extending the setup to include measurement noise on the samples
- Requires application of clustering algorithms from machine learning (For eg. EM algorithm) on the noisy samples

- Deploying sensors according to an arbitrary continuous distribution
- We are working on an algorithm to estimate the field in this case

Other Works in this area

- Animesh Kumar, "Bandlimited Spatial Field Sampling with Mobile Sensors in the Absence of Location Information." *arXiv preprint arXiv:1509.03966*(2015)
- Animesh Kumar, "On bandlimited signal reconstruction from the distribution of unknown sampling locations," *IEEE Transactions on Signal Processing, vol.* 63, no. 5, pp. 1259–1267, Mar. 2015
- Pina Marziliano and Martin Vetterli, "Reconstruction of irregularly sampled discrete-time bandlimited signals with unknown sampling locations," IEEE Transactions on Signal Processing, vol. 48, no. 12, pp. 3462–3471, Dec. 2000
- Alessandro Nordio, Carla-Fabiana Chiasserini, and Emanuele Viterbo, "Performance of linear field reconstruction techniques with noise and uncertain sensor locations," *IEEE Transactions on Signal Processing, vol. 56, no. 8, pp. 3535–3547, Aug. 2008*
- Browning, John, "Approximating signals from nonuniform continuous time samples at unknown locations." *Signal Processing, IEEE Transactions on*55.4 (2007): 1549-1554