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Motivation – Spatial Sampling 

• Consider the problem of estimating a spatially varying field over a large 
area (For eg. Temperature) 

Source: http://climatelondon.org.uk/ 



Standard Approach 
• The usual procedure is to estimate the number of degrees of freedom of 

the field 

• If there are ‘N’ degrees of freedom, ‘N’ samples are taken and the 
corresponding system of equations is solved 

Source: http://climatelondon.org.uk/ 
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Localization of Sensors is Challenging 

• Localization algorithms or GPS equipment required to estimate the 
coordinates of the sensors is expensive – especially if the number of 
sensors is large 

• The location information obtained might be unreliable since sensor 
positions are liable to perturbations in spatial sampling 
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Source: http://climatelondon.org.uk/ 



Benefits of Location Unaware Sensors 

• Reduced cost of sensor deployment 

 

• Lower amount of  data to be 
transmitted 

 

• Masking of sensor locations 
prevents the location from being 
detected even if the data is 
intercepted 

Area of 
Interest 

Data Processing Unit - Location unaware 
   Sensor 



Field Model 

• Consider the 1D version of the spatial sampling problem 

• g(t) is a smooth bandlimited, periodic field (one period is shown) 

• Assuming the period to be 1: 

 

 

g(t) 

t 0 1 



Distributed Sampling Setup 

• Sensors are deployed at unknown locations T1,T2,…, Tn obtained 
according to a random distribution 

• The ordering of the locations is also unknown 

• The goal is to estimate the field using the sample values and the 
distribution on the sensor locations 
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Assumption on Sensor Deployment 

• The problem where sensors are deployed according to a continuous 
distribution is non-linear and hence difficult to solve 

• We will address a simplified version of the problem where the sensors are 
located at a random point on a discrete grid 
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Sampling Model 
•   

 

• sb=              (Spacing Parameter) 

 

• (2b+1) grid points: {0, sb,2sb,…2bsb) 

 

• Consider any sensor deployed 
at location T according to the 
distribution p(t): 
T=isb w.p. pi  (i = 0,1,…,2b) 

 

• Sensor location, i.e. the index ‘i’ is 
unknown and oversampling is used 
to overcome location unawareness  
 

g(t) 

0 sb 2bsb . . . t 1 
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Performance Criterion 
•   

 

•  The field has 2b+1 degrees of 
freedom 

 

• Correct detection of the 2b+1 
field values, g(isb), corresponds 
to correct estimation of the field 

 

• We wish to detect the field 
correctly with a high probability 

 

• Hence detection error 
probability is the performance 
criterion to be minimized 

 

g(t) 

0 sb 2bsb . . . t 1 

-Sensors 

p0 

p1 

p2b 

0 sb 2bsb . . . 

p(t) 

t 1 



Main Result 
•   

 

•  Detection error probability 
depends on the distribution on 
the sensor locations, p(t) 

 

• p(t) is assumed to be discrete 
and asymmetric 

 

• The main result of our work is to 
find the optimal such p(t) that 
minimizes the detection error 
probability of any field g(t)  

g(t) 

0 sb 2bsb . . . t 1 

-Sensors 

p0 

p1 

p2b 

p(t) 

0 sb 2bsb . . . t 1 



Field Detection Algorithm 

• The field detection algorithm 
has 2 steps 

 

• Step 1: Clustering Samples 

 

• Step 2:  Assigning Locations to 
Clusters 

 

• Additional assumption:  
p0 < p1< p2 <…< p2b 
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Scattering 

g(Tk) = g(isb) w.p. pi 

 (0< i <2b; 1< k < n)  
     Tk = isb w.p. pi 

(0< i <2b; 1< k < n) 

g(T1) g(T2) g(T4) g(T5) g(T3) g(Tn) 
. . . 

• All samples of equal value are put in the same cluster (‘Value’ of the 
cluster = Value of any sample in the cluster) 

• Since there are 2b+1 distinct sample values we form (2b+1) clusters 
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Scattering 

g(Tk) = g(isb) w.p. pi 

 (0< i <2b; 1< k < n)  
     Tk = isb w.p. pi 

(0< i <2b; 1< k < n) 

. . . 
Cluster 1 Cluster 2 Cluster 2b+1 

. . . 

• All samples of equal value are put in the same cluster (‘Value’ of the 
cluster = Value of any sample in the cluster) 

• Since there are 2b+1 distinct sample values we form (2b+1) clusters 

 



Assigning Locations to Clusters 

• ‘Type’ of cluster = Number of elements in the cluster 

• Clusters are sorted according to type 

• ‘Value’ of cluster with smallest ‘Type’ is assigned to g(0), next smallest to 
g(sb), and so on till g(2bsb) (since p0 < p1 < …<p2b) 

• Consider the following illustration for the case where b=2 and so there are 
2b+1=5 clusters: 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 



Assigning Locations to Clusters 

• ‘Type’ of cluster = Number of elements in the cluster 

• Clusters are sorted according to type 

• ‘Value’ of cluster with smallest ‘Type’ is assigned to g(0), next smallest to 
g(sb), and so on till g(2bsb) (since p0 < p1 < …<p2b) 

• Consider the following illustration for the case where b=2 and so there are 
2b+1=5 clusters: 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

g(0) g(3sb) g(sb) 
g(2sb) 

g(4sb) 



Illustrative Example 

• Consider a field g(t) as shown below with b=1, sb=1/3 which is sampled 
n=10 times 

 

 

 

 

 

 

 

 

 

• Conclusion: g(0)=1.06, g(1/3)=1.80, g(2/3)=0.14 

• Field is detected correctly 
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Illustrative Example 

• Consider a field g(t) as shown below with b=1, sb=1/3 which is sampled 
n=10 times 

 

 

 

 

 

 

 

 

 

• Conclusion: g(0)=1.80, g(1/3)=1.06, g(2/3)=0.14 

• Field is detected incorrectly 
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What if the field values at 2 sensor 

locations are equal? 

• All samples of the same value are grouped in the same cluster 
 

•  If field value is equal any 2 of the 2b+1 grid points then all the samples  
from these points go into the same cluster and we will have less than 
2b+1 clusters 

 
• If we assume the signal value to be equal at grid points ‘0’ and ‘sb’ to be 

equal then : 
 

 
• To satisfy this one of the Fourier series coefficients, a[k], is constrained to 

a fixed value 
 

• If Fourier Series coefficients of a natural signal are instances of 
independent, continuous random variables then this occurs with 
probability zero 
 



Detection Error Probability 
• Let Ni be the ‘type’ of the cluster corresponding to g(isb) (i.e samples from 

location isb) in a set of ‘n’ samples 
 

• Our field detection algorithm is based on the assumption that 0 < N0 < N1 < …< 
N2b because 0 < p0 < p1 < …<p2b  

 
• Probability of detection error (Pe) = P((0 < N0 < N1 < …< N2b)

c) 

 
• It can be shown from the union bound that: 

M < Pe < (2b+1)M  
M = max( P(N0 = 0), P(N0 > N1), P(N1 > N2), …, P(N2b-1 > N2b)) 
 

• It is known from Sanov’s Theorem (analogous to the Chernoff Bound) that 
each term in M  decays exponentially with an increase in ‘n’ 
 

• Thus the distribution p = (p0, p1 , … , p2b ) that minimizes M, also minimizes Pe 
 
 
 



Deriving the Main Result 
• M = max( P(N0 = 0), P(N0 > N1), P(N1 > N2), …, P(N2b-1 > N2b)) 

 

• P(N0 = 0) = (1- p0)
n  

 

• P(N0 > N1)  2-nD*  (From Sanov’s Theorem)  
 
where D* = min                       , subject to                 and  

 

• The other terms in M can be calculated as a function of p in similar fashion  
 

• Minimizing M  with respect to p (equivalent to minimizing Pe with respect to 
p) gives the following distribution: 
 
 
 

• This is the distribution that gives minimum detection error probability for our 
field detection algorithm 



Simulation Setup 
• Field being estimated:                                                         (b = 4 is assumed) 

 

• a[k]’s are generated using a uniform random number generator (Table 1) with a[-

k] =(a[k])* for real valued fields (conjugate symmetry) 

• Number of samples collected (‘n’) is increased from 100 to 20,000  

• The empirical detection error probability for various distributions (Table 2) on the 
sensor locations is simulated using 10,000 Monte-Carlo trials 

Coefficient Value 

a[0] 1 

a[1] 0.9134 - j0.5469 

a[2] 0.1270 - j0.2785 

a[3] 0.9058 - j0.0975 

a[4] 0.8147 - j0.6324 

Distribution Type p = [p0, p1 , … , p2b ]   

Random α1[U(1),U(2),…,U(2b+1)]* 

Linear α2[1,2,…,2b+1] 

Cubic  α3[1,8,…,(2b+1)3] 

Optimal  α4[1,4,…,(2b+1)2] 

*U(k)’s are ordered uniform random variables 

Table 1 Table 2 



Simulation Results 

• We use a log-log plot since 
the Pe decays exponentially 
with n and we are interested 
in modeling the exponent 
 

• Each plot ends when the 
empirical detection error 
probability becomes zero or 
the maximum sample size  
(n = 20000) is reached 
 

• It is observed that the 
estimated optimal 
distribution decays fastest 
and has the smallest 
empirical detection error 
probability 



Extension to the 2D case 
• In the 1 dimensional case the signal had 2b+1 degrees of freedom and 

hence we sampled it at 2b+1 grid points 

• Similarly in the 2D case, if the signal has ‘N’ degrees of freedom it is 
sampled at ‘N’ grid points 

• Sensors are deployed according to an asymmetric distribution and the 
location on the grid where the sensor lands is unknown 

0 1 2 3 

4 5 6 7 

       

        N=8 

p0 < p1 < …<p7 

 

- Sensors 



Future Work 

• Extending the setup to include  
measurement noise on the 
samples 

 

• Requires application of clustering  
algorithms from machine learning 
(For eg. EM algorithm) on the noisy 
 samples   
 

g(t) 

0 sb 2bsb . . . t 1 

-Sensors 
-Noise 



Future Work 

• Deploying sensors according to an arbitrary continuous distribution 

 

• We are working on an algorithm to estimate the field in this case 
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