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Abstract
Noise corruption can dramatically decrease the speech intelligi-
bility for listeners with cochlear implants (CI). Noise reduction
is a key point in CI speech processing strategy. This paper pro-
poses a statistical model based noise reduction algorithm for-
CIs. A realistic noise estimator, which requires no prior knowl-
edge of the noise, is adopted for noise estimation. An improved
method for determining the user-specific gain function is pro-
posed, in which the apparent gain threshold is incorporated to
compute the optimal parameters, with which the optimal gain
function for noise suppression can be determined accordingly.
Vocoder simulation perceptual experiments with normal hear-
ing listeners shows that the proposed algorithm can significantly
improve the speech intelligibility of the denoised speech.
Index Terms: noise reduction, cochlear implants, gain thresh-
olds

1. Introduction
In speech communications, either human-human or human-
machine, target speech is usually corrupted by acoustic inter-
ferences which reduce the intelligibility of the target speech.
Listeners with normal hearing (NH) have the ability of under-
standing speech even in noisy environments, due to the high
redundancy in speech signal. The robustness of human speech
understanding can be explained by the perceptual process of lis-
tening, i.e., the auditory scene analysis (ASA) [1]. According to
ASA, auditory streaming, glimpsing, spatial cues and linguistic
knowledge of the target speech are all utilized to aid the segre-
gation process [2][3]. The ability of noisy speech perception by
listeners with cochlear implants (CI), however, is much poorer
than that by NH listeners. This is most likely due to the lim-
ited frequency, temporal, and amplitude resolution transmitted
by the CI devices [4].

Although single channel speech enhancement algorithms
produce no significant improvements in speech intelligibility
for NH listeners [5], they have shown significant improvements
for CI ones [6]. Single channel noise reduction algorithms for
CI could be divided into three classes, i.e., spectral subtrac-
tion based (SS) [7], statistical model based (SM) [8], and sub-
space based (SP) [9]algorithms. Although the SP ones have
shown good performances in speech enhancement with station-
ary noise, they have not yet been applied in clinical CI devices
due to its computational complexity and the degraded robust-
ness to non-stationary noise [6]. Most of the current CI devices
adopt the SS and SM as their noise reduction strategies[8]. The
SS ones estimate the short-time spectral magnitude of the tar-
get speech by subtracting the spectral magnitude of the noise
(adaptively estimated from speech pause segments [10]) from

that of the noisy speech. The SM ones typically use the min-
imum tracking and recursive average methods to estimate the
noise spectra that are used to estimate instantaneous signal-to-
noise ratios (SNR) of the noisy signal, with which a gain func-
tion can be computed to suppress the noise component within
the noisy speech [8]. Both SS and SM based methods use a
gain function to determine a level of attenuation applied to noisy
signal to optimally remove the noise. For example, Mauger et
al [11] proposed an ideal binary gain function (IBGF) for SM
based noise reduction. Speech perception results with CI users
suggested that CI users prefer a larger degree of speech distor-
tion to noise corruption, which is contrast to NH listeners, who
prefer noise corruption to speech distortion. Instead of using
IBGF, the second experiment of [11] used a smooth parametric
Wiener gain function for noise suppression. Both experiments
of [11] require prior knowledge of the noise, which is not suit-
able for real-world applications. What’s more, in the second
experiment of [11], pre-training experiment is required to de-
termine the user-dependent gain function for noise suppression.
To do so, each subject was asked to select the most suitable gain
function by changing the threshold value (α) and slope value
(β). It is a time-consuming task for subjects to select the most
suitable values of α and β.

This paper proposed a more realistic noise reduction algo-
rithm for CI devices.Instead of the ideal noise estimate, the im-
proved minimum controlled recursive algorithm [12] which re-
quires no prior knowledge of noise is adopted. Similar to [11],
the parametric Wiener gain function is adopted for optimal gain
function determination. Unlike in [11], the perceptual optimal
gain function is not selected by varingα and β, but from a single
metric called the apparent gain threshold (aGT)[11]. Vocoder
simulation experiments were carried out to evaluate the effect
of the aGT on the intelligibility of the denoised speech and to
examined the potential effectiveness of the proposed noise re-
duction algorithm for CI speech perception.

2. Method
2.1. The statistical model based noise reduction

In this study, the noise and the target speech is additively mixed,
i.e.,

y(n) = x(n) + d(n) (1)
where x(n), d(n) and y(n) denote the target speech, the noise
and the noisy speech, respectively. In spectral domain, (1) can
be reformulated as:

Y (k, l) = X (k, l) +D (k, l) (2)

where Y(k, l), X(k, l) and D(k, l) represent the short-time
Fourier transform of y(n), x(n) and d(n) respectively, k and



l denote the frequency bin and the time frame index.
In statistical model based noise reduction, the target speech

spectrum is estimated by multiplying the noisy speech spectrum
with a gain function G(k, l), i.e.,

X̂ (k, l) = G (k, l) · Y (k, l) (3)

Therefore, the key point is now to compute an optimal gain
function such that the noise corruption and speech distortion of
the estimated speech can be minimized, or in other words, the
intelligibility of the denoised speech can be well maintained.

A classical way to do so is given by [13]. Given λ̂d be an
estimate of the power spectrum of noise, i.e., |D(k, l)|2, a priori
SNR estimate ξ can be calculated by:

ξ (k, l) =

{
γ (k, l)− 1, γ (k, l) > 1
0, γ (k, l) 6 1

(4)

where γ(k, l) is the posteriori noise estimate computed as:

γ (k, l) =
|Y (k, l)|2

λ̂d (k, l)
(5)

A smoothed priori SNR estimate ξ̂(k, l) is calculated through
the recursive average equation:

ξ̂ (k, l) = (1− a) ξ (k, l) + aξ (k, l − 1) (6)

The value of the smoothing factor a was set to be 0.984 in [14].
The gain function can now be computed as:

G (k, l) =

(
ξ̂ (k, l)

ξ̂ (k, l) + α

)β
(7)

where G(k, l) is called the parametric Wiener gain function,
ξ̂(k, l) is the smoothed priori SNR, and α and β are the pare-
metric Wiener variables. The α variable changes the threshold
of the smooth gain function and the β variable changes the slope
of the gain function.

Therefore, the three parameters, i.e., λ̂d, α, and β need to
be determined for noise reduction. In [11], an ideal noise esti-
mation, with the assumption that the prior knowledge of noise
can be obtained, was applied to estimate the noise spectrum,
i.e.,

λd (k, l) =
1

L

L−1∑
i=0

|D(k, l − i)|2 (8)

Besides, user-dependent gain function was determined exper-
imentally by perceptually assessing the quality of denoised
speech with different α and β.

To compare the optimal α and β to the gain threshold as
in the binary masking gain function, a single metric, named
the apparent gain threshold (aGT) was defined to represent the
overall function [11]. Experiments with CI users showed that
although the optimal gain function varies across subjects, the
average preferred gain function has an aGT of 6.8 dB. That is,
the optimal gain function can be determined by varying the aGT,
rather than by covarying the α and β parameters. However, this
results were based on the ideal noise estimation. It might not
be suitable for practical applications, where the noise spectrum
should be estimated online.

2.2. The proposed algorithm

This study proposed an improved algorithm to overcome the
problems above mentioned. Firstly, a realistic noise estima-
tion algorithm, called the improved minimum controlled recur-
sive algorithm (IMCRA) [12], was adopted for noise estimation.
The IMCRA was shown to be able to track the noise spectrum
variation without prior knowledge of the noise component.

As for the gain function, the aGT is adopted to compute
the α (β is preset to be 1)1, with which the gain function is
computed as (7). The aGT is defined as the SNR that attenuates
the input signal by half [11]. Replacing ξ̂(k, l) with aGT in (7),
we have

1

2
=

(
aGT

aGT + α

)
(9)

and
α = 10(aGT/10) (10)

That is, if the perceptually optimal aGT for each subject can be
experimentally determined, the α parameter can be computed
according to (10). Finally, the user-dependent perceptual opti-
mal gain function can be computed as (7).

3. Experiments and Results
To evaluate the effect of gain threshold on speech intelligibility
and the potential effectiveness of the proposed noise reduction
algorithm for noisy speech perception by CI recipients, vocoder
simulation perceptual experiments were conducted with normal
hearing listeners.

3.1. Experimental setups

Eight normal hearing college students (3 females and 5 males,
18-25 years old), participated in the experiment. Age and gen-
der details of the 8 subjects are given in Table 1. All tests were
peformed in sound-proof room using a notebook. The speech
materials were played with the notebook via a Roland Quad-
Capture UA-55 audio interface and a Sennheiser HD 650 head-
set, at a comfortable level.

The speech signals were sentences taken from the MHINT
(Mandarin Hearing in Noise Test) database [15]. There are two
training and twelve test lists, each containing twenty sentences.
That is, there are 40 training sentences and 240 test sentences in
total. Each sentence consists of ten Mandarin words. Two kinds
of noise signal,i.e., babble noise and speech-spectrum shaped
noise (SSN), were used as the interference. As in [11], user-
dependent SNR was adopted for generating the noisy signal and
the SNR is set to be SRT minus 1 dB, where SRT represents the
speech reception threshold. The determination of SRT for each
user under each noise followed the same procedure as in [16].
The training sentences were used to determine the SRTs. SRTs
for each subject with the two noises are also given in Table 1.

For each type of noise, there were six test conditions, i.e.,
noisy speech without noise reduction (noted as Un), denoised
speech with aGT of -5 dB, 0dB, 5 dB, 7.5 dB and 10 dB. Each
condition had 20 test sentences. The denoised test sentences
(or original noisy sentences for the Un condition) were vocoded
and presented to the subjects. Each vocoded sentence could
be presented up to 3 times upon the request of the subject. A
test sentence was considered correctly recognized if 5 or more
words in the sentence were recognized by the subjects. The

1According to [14], the optimal β values for most experimental con-
ditions were all close to 1, the β value is therefore set to 1 in this study.



recognition rate for each condition was computed as the num-
ber of correctly recognized sentences over the total 160 test sen-
tences (8 subjects, each with 20 sentences).

The vocoder simulation process is as in [17]. The input
speech was first divided into 16 frequency bands between 80
and 7999 Hz using sixth-order Butterworth filters. The fre-
quency range was divided equally in terms of the function of
Greenwood [18]. The output of each band was half-wave rec-
tified and then low-pass filtered, with cutoff frequency at 250
Hz, to generate the envelope. The resulting envelope was used
to modulate the carrier: a sine wave located at the center fre-
quency of the frequency band. Finally, the modulated carriers
were level matched to (the output signal from the corresponding
band) and summed to produce the vocoded speech.

Table 1: Data for the 8 subjects who participated in this study.
Age measured in years and SRT measured in decibels.

Subject Gender Age SRT(SSN) SRT(Babble)
1 male 22 2.0 dB -2.3 dB
2 male 23 3.2 dB -1.0 dB
3 male 25 3.0 dB -1.8 dB
4 female 23 1.8 dB -1.5 dB
5 female 22 1.4 dB -3.0 dB
6 female 24 2.6 dB 1.3 dB
7 male 26 2.0 dB 1.5 dB
8 male 25 2.7 dB -2.1 dB

3.2. Results

3.2.1. Results with SSN

Figure 1 shows speech perception rate for the 6 denoising con-
ditions. The target speech signals were corrupted by speech-
spectrum shaped noise. Perception rates for each subject and
their average and standard deviation are also demonstrated. As
illustrated, the recognition rate of the denoised speech varies
across different aGTs. That is, the gain threshold affects the
intelligibility of the denoised speech. Although there is a cer-
tain degree of variation across individual subjects, the optimal
aGT for most subjects are at around 0 or 5 dB. In average, best
recognition rate of 74% can be obtained at aGT = 0 dB. In com-
parison with the undenoising condition, which has a recognition
rate of 45%, there is a relative improvement of 29%.

3.2.2. Results with babble noise

Figure 2 shows speech perception rate for the 6 denoising con-
ditions. The target speech signals were corrupted by 11-talker
babble noise. Perception rates for each subject and their average
and standard deviation are also demonstrated. As illustrated,
similar results as those given in Fig.1 can also be observed. In
average, best recogniton rate of 73% can be obtained at aGT =
5 dB. Compared with the recognition rate of 52% without de-
noising, there is a relative improvement of 21%.

4. Conclusion and Discussion
4.1. Discussion

The parametric gain function for noise suppression in the pro-
posed algorithm is the same as that in [11]. However, there are
two major differences between the two algorithms. Firstly, in-
stead of using the ideal noise estimation as in (8) which requires

Figure 1: Vocoded speech perception rate for the 8 subjects with
different denoising conditions. The noise signal is SSN. Mean
results of all subjects is shown. Error bars indicate the standard
deviation cross the subjects.

Figure 2: Vocoded speech perception rate for the 8 subjects with
different denoising conditions. The noise signal is babble noise.
Mean results of all subjects is shown. Error bars indicate the
standard deviation cross the subjects.

prior knowledge of the noise component,the proposed algorithm
adopted a more realistic noise estimator, which requires no prior
knowledge of the noise. Secondly, in [11], the optimal α and β
parameters for determining the optimal gain function were ex-
perimentally determined by varying both α and β parameters,
which required intensive time consumption to find the optimal



parameters. In the proposed algorithm, the apparent gain thresh-
old is incorporated and the optimal α (with β set to be 1) can be
experimentally determined by varying the gain threshold.

It should be noted that in [11], the experiments were con-
duct with CI recipients, while in this study only vocoder simu-
lation experiments on normal hearing subjects were carried out.
Therefore, it is currently hard to compare the performance of
the two algorithms on speech intelligibility for CI users. Ex-
periments on CI subjects will be conducted in the next stage to
evaluate the performance of the proposed noise reduction algo-
rithm.

As shown in both Fig.1 and 2, the optimal gain threshold
value may vary across individual subjects. Therefore, in clin-
ical implementations, user-dependent gain threshold should be
tuned to obtain the best denoising performance.

4.2. Conclusion

In this study, we proposed an improved statistical model based
noise reduction algorithm for CI signal processing strategies.
The improved minimum controlled recursive algorithm pro-
posed by Cohen, which does not require prior knowledge of the
noise, was adopted for realistic noise estimation. An apparent
gain threshold was adopted to computed the perceptually op-
timal gain function for noise suppression. Vocoder simulation
perceptual experiments with normal hearing listeners showed
that the intelligibility of the denoised speech is highly related to
the value of the gain thereshold. In average best performance
was achieved with aGT = 0 dB for speech-spectrum shaped
noise corruption, and with aGT = 5 dB for babble noise cor-
ruption.
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