
Recursive Least-Squares Algorithms for Sparse System Modeling

Hamed Yazdanpanah1

Paulo S.R. Diniz1

1Laboratório de Sinais, Multimídia e Telecomunicações (SMT)
Departamento de Engenharia Eletrônica e de Computação (DEL)

Universidade Federal do Rio de Janeiro (UFRJ)

{hamed.yazdanpanah, diniz}@smt.ufrj.br

International Conference on Acoustics, Speech and Signal Processing (ICASSP
2017)

1 / 24

Presentation Outline

1 Introduction

2 Recursive Least-Squares (RLS) Algorithm

3 RLS Algorithm for Sparse Systems (S-RLS)

4 l0-norm RLS Algorithm for Sparse Systems (l0-RLS)

5 Data-Selective Version of the Algorithms

6 Results

7 Conclusions

2 / 24

Introduction

Outline

1 Introduction

2 Recursive Least-Squares (RLS) Algorithm

3 RLS Algorithm for Sparse Systems (S-RLS)

4 l0-norm RLS Algorithm for Sparse Systems (l0-RLS)

5 Data-Selective Version of the Algorithms

6 Results

7 Conclusions

3 / 24

Introduction Content

Content

Two algorithms are proposed in this paper:
Recursive Least-Squares algorithm for sparse systems (S-RLS)
l0-norm Recursive Least-Squares algorithm for sparse systems (l0-RLS)

Apply data-selective strategy on both algorithms to reduce the computational
load

4 / 24

Introduction Content

Content

Two algorithms are proposed in this paper:
Recursive Least-Squares algorithm for sparse systems (S-RLS)
l0-norm Recursive Least-Squares algorithm for sparse systems (l0-RLS)

Apply data-selective strategy on both algorithms to reduce the computational
load

4 / 24

Introduction Sparsity & Data-Selective Strategy

Sparsity & Data-Selective Strategy

Sparsity Modeling/Exploitation

Usual strategies:
1. Proportionate update
2. Sparsity-promoting penalty (l0 and l1 norms)
3. Combination of items 1 and 2
4. Apply discard function

Data-Selective Strategy

The output estimation error is small ⇒ the current weight vector is acceptable
⇒ avoid new update

Reduce the computational complexity by avoiding unnecessary updates

5 / 24

Introduction Sparsity & Data-Selective Strategy

Sparsity & Data-Selective Strategy

Sparsity Modeling/Exploitation

Usual strategies:
1. Proportionate update
2. Sparsity-promoting penalty (l0 and l1 norms)
3. Combination of items 1 and 2
4. Apply discard function

Data-Selective Strategy

The output estimation error is small ⇒ the current weight vector is acceptable
⇒ avoid new update

Reduce the computational complexity by avoiding unnecessary updates

5 / 24

Recursive Least-Squares (RLS) Algorithm

Outline

1 Introduction

2 Recursive Least-Squares (RLS) Algorithm

3 RLS Algorithm for Sparse Systems (S-RLS)

4 l0-norm RLS Algorithm for Sparse Systems (l0-RLS)

5 Data-Selective Version of the Algorithms

6 Results

7 Conclusions

6 / 24

Recursive Least-Squares (RLS) Algorithm RLS Algorithm

RLS Algorithm: Overview

Inputs (general case):
current data-pair (x(k), d(k))
λ forgetting factor

Problem:

min ξ
d(k) =

k
∑

i=0

λ
k−i[d(i) − x

T (i)w(k)]2

Solution:

w(k) = SD(k)pD(k)

where

SD(k) =
1

λ

[

SD(k − 1) − SD(k − 1)x(k)xT (k)SD(k − 1)

λ + xT (k)SD(k − 1)x(k)

]

pD(k) = λpD(k − 1) + d(k)x(k)

7 / 24

RLS Algorithm for Sparse Systems (S-RLS)

Outline

1 Introduction

2 Recursive Least-Squares (RLS) Algorithm

3 RLS Algorithm for Sparse Systems (S-RLS)

4 l0-norm RLS Algorithm for Sparse Systems (l0-RLS)

5 Data-Selective Version of the Algorithms

6 Results

7 Conclusions

8 / 24

RLS Algorithm for Sparse Systems (S-RLS) S-RLS Algorithm

Main Idea

Existing algorithms for sparse systems include/add something to the classical
algorithms ⇒ increase complexity

S-RLS algorithm reduces the importance of coefficients close to zero

How?
Applying a discard function

9 / 24

RLS Algorithm for Sparse Systems (S-RLS) S-RLS Algorithm

Main Idea

Existing algorithms for sparse systems include/add something to the classical
algorithms ⇒ increase complexity

S-RLS algorithm reduces the importance of coefficients close to zero

How?
Applying a discard function

9 / 24

RLS Algorithm for Sparse Systems (S-RLS) S-RLS Algorithm

Main Idea

Existing algorithms for sparse systems include/add something to the classical
algorithms ⇒ increase complexity

S-RLS algorithm reduces the importance of coefficients close to zero

How?
Applying a discard function

9 / 24

RLS Algorithm for Sparse Systems (S-RLS) S-RLS Algorithm

Discard Function fǫ(ω)

fǫ(ω) ,

{

ω if |ω| > ǫ

0 if |ω| ≤ ǫ
ǫ: models the uncertainty on the coefficients

−1 −0.5 0 0.5 1

x 10
−3

−1

−0.5

0

0.5

1
x 10

−3

w

f ε(w
)

Figure: Discard function fǫ(ω) for ǫ = 10−4.

10 / 24

RLS Algorithm for Sparse Systems (S-RLS) S-RLS Algorithm

S-RLS Algorithm: Problem and Solution

Problem:

min ξ
d(k) =

k
∑

i=0

λ
k−i[d(i) − x

T (i)fǫ(w(k))]2

Solution:

w(k) = SD,ǫ(k)pD,ǫ(k)

where

SD(k) =
1

λ

[

SD,ǫ(k − 1) − SD,ǫ(k − 1)Fǫ(w(k))x(k)xT (k)Fǫ(w(k))SD,ǫ(k − 1)

λ + xT (k)Fǫ(w(k))SD,ǫ(k − 1)Fǫ(w(k))x(k)

]

pD,ǫ(k) = λpD,ǫ(k − 1) + Fǫ(w(k))x(k)d(k)

Fǫ(w(k)) : Jacobian of fǫ(w(k))

⇒ Diagonal matrix with entries equal to zero or one

⇒ Reduces the importance of small coefficients

11 / 24

RLS Algorithm for Sparse Systems (S-RLS) S-RLS Algorithm

S-RLS Algorithm: Assumptions

Some difficulties that appeared during the derivation of the S-RLS algorithm, and
how they were addressed:

The discard function is not differentiable at the points ±ǫ ⇒ Solution: use the
left and right derivatives

Matrix Fǫ(w(k)) is not invertible ⇒ Solution: replace the zero entries on the
diagonal with a small constant

Initialization cannot be w(0) = 0

12 / 24

l0-norm RLS Algorithm for Sparse Systems (l0-RLS)

Outline

1 Introduction

2 Recursive Least-Squares (RLS) Algorithm

3 RLS Algorithm for Sparse Systems (S-RLS)

4 l0-norm RLS Algorithm for Sparse Systems (l0-RLS)

5 Data-Selective Version of the Algorithms

6 Results

7 Conclusions

13 / 24

l0-norm RLS Algorithm for Sparse Systems (l0-RLS) l0-RLS Algorithm

l0-RLS Algorithm

Problem:

min ξ
d(k) =

k
∑

i=0

λ
k−i[d(i) − x

T (i)w(k)]2 + α‖w(k)‖0

Discontinuity of l0-norm ⇒ Geman-McClure function substitutes for l0-norm

min ξ
d(k) =

k
∑

i=0

λ
k−i[d(i) − x

T (i)w(k)]2 + αGβ(w(k))

Solution:

w(k) = SD(k)
(

pD(k) − α

2
gβ(w(k − 1))

)

where gβ(w(k − 1)) , ∇Gβ(w(k − 1))

14 / 24

l0-norm RLS Algorithm for Sparse Systems (l0-RLS) l0-RLS Algorithm

Geman-McClure Function Gβ(w)

Gβ(w) ,
∑N

i=0
(1 − 1

1+β|w(i)|
) β: controls the agreement between the quality

of the approximation and smoothness of Gβ

w
-1 -0.5 0 0.5 1

G
β
(w

)

0

0.2

0.4

0.6

0.8

1

Figure: Geman-McClure function Gβ(w) for β = 5.

15 / 24

Data-Selective Version of the Algorithms

Outline

1 Introduction

2 Recursive Least-Squares (RLS) Algorithm

3 RLS Algorithm for Sparse Systems (S-RLS)

4 l0-norm RLS Algorithm for Sparse Systems (l0-RLS)

5 Data-Selective Version of the Algorithms

6 Results

7 Conclusions

16 / 24

Data-Selective Version of the Algorithms Apply Data-Selective Strategy

Apply Data-Selective Strategy

Data-selective S-RLS (DS-S-RLS) and data-selective l0-RLS (DS-l0-RLS) algorithms
update whenever the error signal is larger than a predescribed value γ, i.e.,

DS-S-RLS:

w(k + 1) =

{

implement S − RLS update if |e(k)| > γ,

w(k) otherwise,

DS-l0-RLS:

w(k + 1) =

{

implement l0 − RLS update if |e(k)| > γ,

w(k) otherwise,

Advantage: Avoid unnecessary updates and reduce computational complexity

17 / 24

Results

Outline

1 Introduction

2 Recursive Least-Squares (RLS) Algorithm

3 RLS Algorithm for Sparse Systems (S-RLS)

4 l0-norm RLS Algorithm for Sparse Systems (l0-RLS)

5 Data-Selective Version of the Algorithms

6 Results

7 Conclusions

18 / 24

Results Simulations

Scenario: System Identification

Algorithms tested: RLS, S-RLS, l0-RLS, Adaptive Sparse Variational Bayes
iterative scheme based on Laplace prior (ASVB-L), Zero-Attracting LMS
(ZA-LMS), DS-S-RLS, DS-l0-RLS, DS-ZA-LMS, and DS-ASVB-L algorithms

Input signal: AR(1) (first-order autoregressive)

Filter order: N = 14

w(0) = [1, · · · , 1]T

ǫ = 0.015 ⇒ 10 out of 15 coefficients belong to [−ǫ, ǫ]

β = 5

SNR: 20 dB

γ =
√

5σ2
n

λ = 0.97

19 / 24

Results Algorithms without Data-Selective Strategy

Algorithms without Data-Selective Strategy

Learning (MSE) curves

Number of iterations, k
0 100 200 300 400 500

M
S

E
 [d

B
]

-20

-15

-10

-5

0
RLS
S-RLS
l0-RLS
ASVB-L
ZA-LMS

(a)

Number of iterations, k
0 500 1000 1500

M
S

E
 [d

B
]

-20

-15

-10

-5

0
RLS
S-RLS
l0-RLS
ASVB-L
ZA-LMS

(b)

Figure: (a) Time-invariant sparse system; (b) time-variant sparse system.

20 / 24

Results Algorithms with Data-Selective Strategy

Algorithms with Data-Selective Strategy

Learning (MSE) curves

Update rate: DS-ZA-LMS: 44.5%, DS-S-RLS: 10.3%, DS-l0-RLS: 9.8%,
DS-ASVB-L: 7.9%.

Number of iterations, k
0 100 200 300 400 500

M
S

E
 [d

B
]

-20

-15

-10

-5

0
DS-ZA-LMS
DS-S-RLS
DS-l

0
-RLS

DS-ASVB-L

Figure: Learning curves of DS algorithms for time-invariant sparse system.

21 / 24

Conclusions

Outline

1 Introduction

2 Recursive Least-Squares (RLS) Algorithm

3 RLS Algorithm for Sparse Systems (S-RLS)

4 l0-norm RLS Algorithm for Sparse Systems (l0-RLS)

5 Data-Selective Version of the Algorithms

6 Results

7 Conclusions

22 / 24

Conclusions

Conclusions

In this presentation:
The concept of discard function is used in order to propose S-RLS algorithm
The l0-norm and Geman-McClure function are used in order to propose l0-RLS
algorithm
The proposed algorithms have better performance compared to the LMS-based
algorithms (e.g., ZA-LMS)
The proposed algorithms demand lower computational load compared to the
Bayesian algorithms (e.g., ASVB-L)
Data-selective strategy reduces extremely the computational complexity

23 / 24

Conclusions

Thank You!

24 / 24

