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Outline

* Introduction to Radio Vision technologies for non-cooperative device-free
localization and motion recognition

« Time-varying dynamic Bayesian network model for non-cooperative and

device-free body maotion recognition
- Coupled hidden Markov (CHM) chain modeling of RF perturbations

over co-located link pairs
- Time-varying Bayesian network model for tracking coupled/uncoupled

links

» Learning and classification problems discussed based on experimental
measurements in a representative indoor environment
- Applications: arm motion recognition, fall detection
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Device-free Radio Vision

- Augmented functionality provided by densely networked radio devices that monitor
the fluctuations of a modulated RF field (e.g., adopted for wireless communications)

- Radio-vision leverage body-induced diffraction, reflection and scattering phenomena
that affect RF propagation for ubiquitous human-scale sensing

Human-induced fading
(diffraction/reflection/
scattering)
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Radio Vision: typical configurations

Passive — Capturing Ambient Radio Signals Active — Device-to-Device Communications

Fixed/nomadic Cellular
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Centralized CQI
processing

Cooperative
CQI processing Device-to- Cooperative
Device CQI processing
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Channel Quality Information extraction

(a) RSS information: example

RF

L

downconverter

I/Q 5

Digital
RSSI

(b) CSI in multi-carrier (OFDM)
modulation: example
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Device-free Activity Recognition:
Gesture and motion detection
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Wireless mesh network whose transmissions
are organized into periodic frames, or
symbols

A person inside the propagation area
performing an activity, in a pre-assigned
location, defined as a generic combinations
of elementary body motions (arm motions in
the example)

Time-Varying Dynamic Bayesian Network
(TV-DBN) introduced to describe the joint
human-induced RF fluctuations among co-
located links and account for spatial (link-wise)
correlation of the channel response over
multiple links:

1. “link hidden states”, CQI shifts and profile
definition

2. prior Bayes network structure (defines initial
dependency of link states)

3. Transition network graph

4. Time-varying transition network graph (to model
time-varying coupled and uncoupled link states)



Link hidden states, CQl shifts and profile

The effects of the user state ® on the channel response are observed over T
consecutive received frames from which CQI information can be extracted.

The CQI (in dB scale) over links 44, ...,Zy and frame (symbol) 1 <t < T
corresponding to the user state ® can be modeled as

s:(0) = q:(0) +5(9) + u;

Hidden CQI shifts take the role of “link states” and are represented in terms of a set
of mutually coupled random variables

' F
qt(©) = [ﬁri V) ‘”]

The collection of temporal shiftsin 1 <t < T is the CQI profile.

Interactions of CQI shits among co-located links are time-varying (therefore
standard HMM not effective)

Focus of this paper is on interactions among link pairs
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Gesture recognition: example with RSS data
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State transition probablllty example (2)
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Time-varying DBN model for a selected link pair

1. Prior network structure G, 2. Transition network graph G;

N
Prqo|Go] = [T, Pr {Qégk)\Go (Qégk))} Prqealqe, Ge) = [ ] Pr {qgﬁ)(}t (qu’“)”
k=1

G = G, Gy = Gg Dynamic Bayesian Network model
¢ ¢
3. Coupled HM qtfl‘% qt qf qf" t+l
model: R
R4
qtl_11 qth qtfl

Gt:={Gt:-. GE}

receiver

2

1 receiver DEC ———
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Time-varying DBN model for a selected link pair:

(2)

Selected pairs of co-located links Cy , = (£, €) can interact (for some relevant
time epochs t) by mutually influencing each other future states

Time-varying transition network for paired links can switch among two
“topologies” Vt as

Gf_:={ Gc-. GE}
to represent coupled and uncoupled configurations at epoch t.

The (binary) sequence

Gl:T—i = {Glr---gGT—l}

thus rules the time-varying coupling of the embedded CQI shifts.
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Classification and detection of gestures

Likelihood evaluation for activity classification is based on the forward-backward
algorithm (frontier method): the joint probability for a selected link pair:

Pr [Sl:t-. q: — qn,q|G1:t—1] = (l't(qu.q‘Gl:t—l)
_ (£e) _ (£n) _
Qn.q = [qt — Qn,q; —q'?]

Is iteratively evaluated and accounts for the time-varying coupled state sequence
GiT_1 = {G1:---1GT—1}

iy 1 (E]t+1 _ qﬂLp|G1:t) — Pr (5t—|—1|C|-m;n) v Time-varying transition

Kzﬂ't (dn,q|G1:t—1) X Crnln,g%pin.g l\/ for coupled/uncoupled

dn,q link pair

Decision on activity ©: I'¢, ,(©) > 7

— |pErSir|A ()]

Log-likelihood rate: I'¢; ,, (©) Pr(S1rMNO)] Pr(Sut[A] = > . er(ar|GuTr-1)

Major voting over selected link pairs
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Gesture/no-gesture detection ratio
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TV-DBN model learning (overview)

- Link pairs chosen during calibration
- Expectation-Maximization (EM) algorithm for DBN model parameters

Starting from a DBN model estimate 1U) at iteration 7, it re-estimates the DBN
parameter set 1U*D given a new observed sequence S ”” such that

Pr {S&f%‘lJP\UHJ} > Pr [SE%’”P\U}}

- Re-estimation of intial states and observation probability (standard Baum-Welch)
- Re-estimation of time-varying transition network: o) (j +1), /") (j + 1)

ZVﬂGt:GC Z'p gt:c (q’m,pg qn,q)

e.g. for (&) (j+1)= R .
m|fn q e-estimation
Coupl(:\d Z*v’ﬂet:(;‘c T, (qn’Q) of TV transition
epocns: , :
g Et,c = Pr |:q£:—1,{h|§t, GE”” = Gc,}k':-’}} network
ol G + 1)
- Re-estimation of the binary sequence of coupled/uncoupled epochs: T (gl'h) G41)
j+1 ‘ Gt 1
} j+1) (3_1_1) G+ 1y () Re-estimation
s.t.Pr {SLT A > Pr Syt 7 |A of binary
sequence
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Fall detection: example with CSI data
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Validation: ROC curves

Validation: ROC for multi-link arm gesture and fall detection

ROC performance
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Conclusions

DBN-based techniques proposed for device-free radio vision systems

A time-varying DBN model describes the human-induced CQI footprints, and
account for non-stationarity and spatial (link-wise) correlation (coupling) of
the channel response over multiple links.

Model is validated or human body motion recognition through extensive
experimental RF measurements, focusing on arm gesture recognition and
fall detection

Validation of detection performance is analyzed in terms of sensitivity and
false positive rates (ROC)
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