

3rd IEEE Global Conference on Signal & Information Processing

Orlando, Florida, USA December 14-16 2015

Waveform Encoding for Nonlinear Electromagnetic Tomographic Imaging

Yuanwei Jin¹, Chengdong Dong¹, and Enyue Lu²

¹University of Maryland Eastern Shore, MD ²Salisbury University, MD

December 14, 2015

Outline

- Background and Motivation
- MIMO Tomographic Imaging Algorithm
- Numerical Simulations
- Conclusion

What is Electromagnetic (EM) Tomography?

EM tomography is an inverse scattering problem

- Source antenna transmits EM signals into a medium
- Scattered signals are received
- Inversion algorithms are applied to reconstruct material properties based upon Maxwell's equations
- Applications: Large scale seismic imaging, medical imaging

Electromagnetic Tomography

Mathematically, EM tomography is an inverse problem

- Infer model parameters p(r) from measured data based upon underlying Maxwell's equations
- Image to be reconstructed: a spatial distribution of $p(r), r \in \Omega$

$$y_j = A_j(p(r); s_j) + \eta_j$$

$y_j \in \partial \Omega imes [0, T]$	measured data by receivers
$p(r)$, $r\in \Omega$	material values (i.e., dielectric const.)
S _j	<i>j</i> -th excitation signal
A _j	Nonlinear operator determined by wave model
η_j	Noise and disturbance

The Challenges of EM Tomography

Challenge 1: The inverse problem is ill-posed

dimension of p (# of grids) \gg dimension $|\partial \Omega|$ (# of receivers)

Classic approach: Regularization is required (e.g., sparsity constraint on p) to reduce the dimension of solution space

Challenge 2: Nonlinear inversion method

- Classic approach: least squares optimization or the iterative Newton's method require iterative algorithms
- The cost of computation depends on the size of the data volumes and on the discretization of the wave model

The SIMO Classic Data Collection Process

Single-Input Multiple Output (SIMO)

- An image is reconstructed from measured data in response to a single excitation antenna source.
- The reconstruction process continues till all the sources are excited

Single-input multiple-output (SIMO) configuration

Waveform Encoding for Nonlinear Electromagnetic Tomographic Imaging

Our approach: MIMO Excitation and Waveform Encoding

- How to remove cross-talk induced by simultaneous waveform excitation due to wave interference?
 - Time delays
 - Random weights

Outline

Background and Motivation

MIMO Tomographic Imaging Algorithm

Numerical Simulations

MIMO Imaging Problem Formulation

Imaging Configuration

The 2D transverse magnetic (TM) model

Maxwell's equations

$$\frac{\partial E_z}{\partial t}(t) = -\frac{\sigma}{\epsilon} E_z(t) + \frac{1}{\epsilon} \left(\frac{\partial H_y}{\partial x} + x \frac{\partial H_x}{\partial y} \right)(t) - \frac{1}{\epsilon} J_z(t)$$
$$\frac{\partial H_y}{\partial t}(t) = \frac{1}{\mu} \frac{\partial E_z}{\partial x}(t)$$
$$\frac{\partial H_x}{\partial t}(t) = -\frac{1}{\mu} \frac{\partial E_z}{\partial y}(t)$$

$E_z(t) \in \Omega \times [0,T]$	Electric field intensity in z-direction
H_y , H_x	Magnetic field intensity in x-, y-direction
$p=[\mu,\sigma,\epsilon]$	Parameter set
ϵ	Dielectric constant is to be reconstructed
$J_z(t)$	Excitation source

Approach to solve
$$y_j = A_j(p(r); s_j) + \eta_j$$

Newton's method: iteration starts from an initial guess f⁰

$$p^{k+1} = p^k + \lambda \delta p^k$$

Relaxation Increment
factor value

The increment value δp^k can be solved by adjoint method

Waveform Encoding Schemes

Random phase encoding: weights w_i are phase coded

$$J_{z,m}^{(1)}(r^{t},t) = \sum_{j=1}^{L_{m}} w_{j} s_{j}(t) \delta(r^{t} - r_{j}^{t})$$

Time-delay encoding: delay τ_j

$$J_{z,m}^{(2)}(r^{t},t) = \sum_{j=1}^{L_{m}} s_{j}(t-\tau_{j})\delta(r^{t}-r_{j}^{t})$$

Uniform weight encoding

$$J_{z,m}^{(3)}(r^{t},t) = \sum_{j=1}^{L_{m}} s_{j}(t)\delta(r^{t}-r_{j}^{t})$$

Impact of Excitation Sources

Re-write the 2D TM Maxwell's equations

$$\frac{\partial^2 E_z}{\partial t^2} - c^2 \frac{\partial^2 E_z}{\partial z^2} = f(z, t)$$

The forcing term
$$f(z, t) = \frac{1}{\epsilon} \frac{\partial}{\partial t} (J_z + \sigma E_z)$$

The solution (general solution + particular solution)

$$E_z = E_{z,g} + E_{z,p}$$

$$\boldsymbol{E}_{\boldsymbol{z},\boldsymbol{p}} = \frac{\sqrt{\mu\epsilon}}{c} \int_{0}^{t} \int_{z-(t-t')/\sqrt{\mu\epsilon}}^{z+(t-t')/\sqrt{\mu\epsilon}} f(z,t) dz dt$$

 Electric field computed in the forward model depends on the excitation source, which also affects the reconstruction procedure implicitly

Numerical Simulations

 Simulation configuration

Excitation signal	Gaussian modulated pulse
Target dielectric values	$\epsilon_1=1.2\epsilon_0$, $\epsilon_2=1.5\epsilon_0$
Computational region	12 cm by 12 cm
Mesh grids	40 by 40
# of antennas	90
Noise level	5%

Reconstructed Images

1.5 5 1.4 10 15 1.3 20 (b) 1.2 25 30 1.1 35 40 1 10 20 30 40

(a)

(a)	Random encoding
(b)	Time delay
(c)	Uniform weight

Convergence History

$$\boldsymbol{\beta} = \frac{\left\| \hat{\boldsymbol{\epsilon}}^k - \boldsymbol{\epsilon}_{true} \right\|^2}{\| \hat{\boldsymbol{\epsilon}}^0 - \boldsymbol{\epsilon}_{true} \|^2}$$

Conclusions

- Proper encoding techniques accelerate convergence of iterative inverse methods for nonlinear EM tomography
- Demonstrate the power of signal processing techniques for improving computational efficiency for solving nonlinear inverse problems
- Suitable for large-scale high resolution imaging applications

Acknowledgement

The research was supported in part by

- ONR/ARO under grant no. W911NF-11-1-0160
- NSF under grants no. CMMI-1126008 and no. CCF-1156509

Thank you!