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What is Electromagnetic (EM) Tomography?

 EM tomography is an inverse scattering problem
 Source antenna transmits EM signals into a medium

 Scattered signals are received

 Inversion algorithms are applied to reconstruct material properties 
based upon Maxwell’s equations

 Applications: Large scale seismic imaging, medical imaging

Incident wave

Scattered wave

Sensor system

object
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Electromagnetic Tomography

 Mathematically, EM tomography is an inverse problem
 Infer model parameters 𝒑 𝒓 from measured data based upon 

underlying Maxwell’s equations 

 Image to be reconstructed: a spatial distribution of  𝒑 𝒓 , 𝒓 ∈ 𝛀

𝒚𝒋 = 𝑨𝒋 𝒑 𝒓 ; 𝒔𝒋 + 𝜼𝒋

𝒚𝒋 ∈ 𝝏𝛀 × 𝟎, 𝑻 measured data by receivers

𝒑 𝒓 , 𝒓 ∈ 𝛀 material values (i.e., dielectric const.)

𝒔𝒋 𝒋-th excitation signal

𝑨𝒋 Nonlinear operator determined by wave model

𝜼𝒋 Noise and disturbance
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The Challenges of EM Tomography

 Challenge 1: The inverse problem is ill-posed

 Classic approach: Regularization is required (e.g., sparsity constraint on 
𝒑) to reduce the dimension of solution space

 Challenge 2: Nonlinear inversion method
 Classic approach: least squares optimization or the iterative Newton’s 

method require iterative algorithms

 The cost of computation depends on the size of the data volumes and 
on the discretization of the wave model

dimension of 𝒑 (# of grids)  ≫ dimension |𝝏𝛀| (# of receivers)



Carnegie MellonWaveform Encoding for Nonlinear Electromagnetic Tomographic Imaging

6

The SIMO Classic Data Collection Process

 Single-Input Multiple Output (SIMO)
 An image is reconstructed from measured data in response to a single 

excitation antenna source. 

 The reconstruction process continues till all the sources are excited

𝑺𝟏
𝑺𝟐

𝑺𝟒 𝑺𝟑

Excitation antenna

Scattered wave

𝑺𝟏

Single-input multiple-output (SIMO) configuration

𝒙
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Our approach: MIMO Excitation and 
Waveform Encoding

𝑺𝟏 𝑺𝟐

𝑺𝟒 𝑺𝟑

𝑺𝟏 𝑺𝟐

𝑺𝟒 𝑺𝟑

𝒕𝟏 𝒕𝟐

 How to remove cross-talk induced by simultaneous waveform 
excitation due to wave interference? 
 Time delays
 Random weights
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MIMO Imaging Problem Formulation

 Imaging Configuration
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The 2D transverse magnetic (TM) model

 Maxwell’s equations

𝝏𝑬𝒛

𝝏𝒕
(𝒕) = −

𝝈

𝝐
𝑬𝒛 𝒕 +

𝟏

𝝐

𝝏𝑯𝒚

𝝏𝒙
+ 𝒙

𝝏𝑯𝒙

𝝏𝒚
𝒕 −

𝟏

𝝐
𝑱𝒛(𝒕)

𝝏𝑯𝒚

𝝏𝒕
(𝒕) =

𝟏

𝝁

𝝏𝑬𝒛

𝝏𝒙
𝒕

𝝏𝑯𝒙

𝝏𝒕
𝒕 = −

𝟏

𝝁

𝝏𝑬𝒛

𝝏𝒚
𝒕

𝑬𝒛 𝒕 ∈ 𝛀 × [𝟎, 𝑻] Electric field intensity in z-direction

𝑯𝒚, 𝑯𝒙 Magnetic field intensity in x-, y-direction

𝒑 = [𝝁, 𝝈, 𝝐] Parameter set

𝝐 Dielectric constant is to be reconstructed

𝑱𝒛(𝒕) Excitation source
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Approach to solve 

 Newton’s method: iteration starts from an initial 
guess 𝒇𝟎

 The increment value  𝜹𝒑𝒌 can be solved by adjoint
method

𝒑𝒌+𝟏 = 𝒑𝒌 + 𝝀 𝜹𝒑𝒌

Relaxation 
factor

Increment 
value

𝒚𝒋 = 𝑨𝒋 𝒑 𝒓 ; 𝒔𝒋 + 𝜼𝒋
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Waveform Encoding Schemes

 Random phase encoding: weights 𝒘𝒋 are phase coded

 Time-delay encoding: delay 𝝉𝒋

 Uniform weight encoding

𝑱𝒛,𝒎
𝟏

(𝒓𝒕, 𝒕) =  

𝒋=𝟏

𝑳𝒎

𝒘𝒋𝒔𝒋 𝒕 𝜹(𝒓𝒕 − 𝒓𝒋
𝒕)

𝑱𝒛,𝒎
𝟑

(𝒓𝒕, 𝒕) =  

𝒋=𝟏

𝑳𝒎

𝒔𝒋 𝒕 𝜹(𝒓𝒕 − 𝒓𝒋
𝒕)

𝑱𝒛,𝒎
𝟐

(𝒓𝒕, 𝒕) =  

𝒋=𝟏

𝑳𝒎

𝒔𝒋 𝒕 − 𝝉𝒋 𝜹(𝒓𝒕 − 𝒓𝒋
𝒕)



Carnegie MellonWaveform Encoding for Nonlinear Electromagnetic Tomographic Imaging

13

Impact of Excitation Sources
 Re-write the 2D TM Maxwell’s equations

 The solution (general solution + particular solution)

 Electric field computed in the forward model depends on the 
excitation source, which also affects the reconstruction 
procedure implicitly

𝝏𝟐𝑬𝒛

𝝏𝒕𝟐
− 𝒄𝟐

𝝏𝟐𝑬𝒛

𝝏𝒛𝟐
= 𝒇(𝒛, 𝒕)

𝒇(𝒛, 𝒕) =
𝟏

𝝐

𝝏

𝝏𝒕
(𝑱𝒛 + 𝝈𝑬𝒛)The forcing term

𝑬𝒛 = 𝑬𝒛,𝒈 + 𝑬𝒛,𝒑

𝑬𝒛,𝒑 =
𝝁𝝐

𝒄
 
𝟎

𝒕

 
𝒛−(𝒕−𝒕′)/ 𝝁𝝐

𝒛+(𝒕−𝒕′)/ 𝝁𝝐

𝒇 𝒛, 𝒕 𝒅𝒛𝒅𝒕
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Numerical Simulations

Excitation signal Gaussian modulated pulse

Target dielectric values 𝝐𝟏 = 𝟏. 𝟐𝝐𝟎, 𝝐𝟐 = 𝟏. 𝟓𝝐𝟎

Computational region 12 cm by 12 cm

Mesh grids 40 by 40

# of antennas 90

Noise level 5%

 Simulation 
configuration
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Reconstructed Images

(a)

(b)

(c)
(a) Random encoding

(b) Time delay

(c) Uniform weight
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Convergence History
𝜷 =

 𝝐𝒌 − 𝝐𝒕𝒓𝒖𝒆
𝟐

 𝝐𝟎 − 𝝐𝒕𝒓𝒖𝒆
𝟐
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Conclusions

 Proper encoding techniques accelerate convergence of 
iterative inverse methods for nonlinear EM tomography

 Demonstrate the power of signal processing techniques for 
improving computational efficiency for solving nonlinear 
inverse problems

 Suitable for large-scale high resolution imaging applications 
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