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What is Electromagnetic (EM) Tomography?

 EM tomography is an inverse scattering problem
 Source antenna transmits EM signals into a medium

 Scattered signals are received

 Inversion algorithms are applied to reconstruct material properties 
based upon Maxwell’s equations

 Applications: Large scale seismic imaging, medical imaging

Incident wave

Scattered wave

Sensor system

object
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Electromagnetic Tomography

 Mathematically, EM tomography is an inverse problem
 Infer model parameters 𝒑 𝒓 from measured data based upon 

underlying Maxwell’s equations 

 Image to be reconstructed: a spatial distribution of  𝒑 𝒓 , 𝒓 ∈ 𝛀

𝒚𝒋 = 𝑨𝒋 𝒑 𝒓 ; 𝒔𝒋 + 𝜼𝒋

𝒚𝒋 ∈ 𝝏𝛀 × 𝟎, 𝑻 measured data by receivers

𝒑 𝒓 , 𝒓 ∈ 𝛀 material values (i.e., dielectric const.)

𝒔𝒋 𝒋-th excitation signal

𝑨𝒋 Nonlinear operator determined by wave model

𝜼𝒋 Noise and disturbance
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The Challenges of EM Tomography

 Challenge 1: The inverse problem is ill-posed

 Classic approach: Regularization is required (e.g., sparsity constraint on 
𝒑) to reduce the dimension of solution space

 Challenge 2: Nonlinear inversion method
 Classic approach: least squares optimization or the iterative Newton’s 

method require iterative algorithms

 The cost of computation depends on the size of the data volumes and 
on the discretization of the wave model

dimension of 𝒑 (# of grids)  ≫ dimension |𝝏𝛀| (# of receivers)
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The SIMO Classic Data Collection Process

 Single-Input Multiple Output (SIMO)
 An image is reconstructed from measured data in response to a single 

excitation antenna source. 

 The reconstruction process continues till all the sources are excited

𝑺𝟏
𝑺𝟐

𝑺𝟒 𝑺𝟑

Excitation antenna

Scattered wave

𝑺𝟏

Single-input multiple-output (SIMO) configuration

𝒙
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Our approach: MIMO Excitation and 
Waveform Encoding

𝑺𝟏 𝑺𝟐

𝑺𝟒 𝑺𝟑

𝑺𝟏 𝑺𝟐

𝑺𝟒 𝑺𝟑

𝒕𝟏 𝒕𝟐

 How to remove cross-talk induced by simultaneous waveform 
excitation due to wave interference? 
 Time delays
 Random weights
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MIMO Imaging Problem Formulation

 Imaging Configuration
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The 2D transverse magnetic (TM) model

 Maxwell’s equations

𝝏𝑬𝒛

𝝏𝒕
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𝟏

𝝐
𝑱𝒛(𝒕)

𝝏𝑯𝒚

𝝏𝒕
(𝒕) =

𝟏

𝝁

𝝏𝑬𝒛

𝝏𝒙
𝒕

𝝏𝑯𝒙

𝝏𝒕
𝒕 = −

𝟏

𝝁

𝝏𝑬𝒛

𝝏𝒚
𝒕

𝑬𝒛 𝒕 ∈ 𝛀 × [𝟎, 𝑻] Electric field intensity in z-direction

𝑯𝒚, 𝑯𝒙 Magnetic field intensity in x-, y-direction

𝒑 = [𝝁, 𝝈, 𝝐] Parameter set

𝝐 Dielectric constant is to be reconstructed

𝑱𝒛(𝒕) Excitation source
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Approach to solve 

 Newton’s method: iteration starts from an initial 
guess 𝒇𝟎

 The increment value  𝜹𝒑𝒌 can be solved by adjoint
method

𝒑𝒌+𝟏 = 𝒑𝒌 + 𝝀 𝜹𝒑𝒌

Relaxation 
factor

Increment 
value

𝒚𝒋 = 𝑨𝒋 𝒑 𝒓 ; 𝒔𝒋 + 𝜼𝒋
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Waveform Encoding Schemes

 Random phase encoding: weights 𝒘𝒋 are phase coded

 Time-delay encoding: delay 𝝉𝒋

 Uniform weight encoding

𝑱𝒛,𝒎
𝟏

(𝒓𝒕, 𝒕) =  

𝒋=𝟏

𝑳𝒎

𝒘𝒋𝒔𝒋 𝒕 𝜹(𝒓𝒕 − 𝒓𝒋
𝒕)

𝑱𝒛,𝒎
𝟑

(𝒓𝒕, 𝒕) =  

𝒋=𝟏

𝑳𝒎

𝒔𝒋 𝒕 𝜹(𝒓𝒕 − 𝒓𝒋
𝒕)

𝑱𝒛,𝒎
𝟐

(𝒓𝒕, 𝒕) =  

𝒋=𝟏

𝑳𝒎

𝒔𝒋 𝒕 − 𝝉𝒋 𝜹(𝒓𝒕 − 𝒓𝒋
𝒕)
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Impact of Excitation Sources
 Re-write the 2D TM Maxwell’s equations

 The solution (general solution + particular solution)

 Electric field computed in the forward model depends on the 
excitation source, which also affects the reconstruction 
procedure implicitly

𝝏𝟐𝑬𝒛

𝝏𝒕𝟐
− 𝒄𝟐

𝝏𝟐𝑬𝒛

𝝏𝒛𝟐
= 𝒇(𝒛, 𝒕)

𝒇(𝒛, 𝒕) =
𝟏

𝝐

𝝏

𝝏𝒕
(𝑱𝒛 + 𝝈𝑬𝒛)The forcing term

𝑬𝒛 = 𝑬𝒛,𝒈 + 𝑬𝒛,𝒑

𝑬𝒛,𝒑 =
𝝁𝝐

𝒄
 
𝟎

𝒕

 
𝒛−(𝒕−𝒕′)/ 𝝁𝝐

𝒛+(𝒕−𝒕′)/ 𝝁𝝐

𝒇 𝒛, 𝒕 𝒅𝒛𝒅𝒕
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Numerical Simulations

Excitation signal Gaussian modulated pulse

Target dielectric values 𝝐𝟏 = 𝟏. 𝟐𝝐𝟎, 𝝐𝟐 = 𝟏. 𝟓𝝐𝟎

Computational region 12 cm by 12 cm

Mesh grids 40 by 40

# of antennas 90

Noise level 5%

 Simulation 
configuration
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Reconstructed Images

(a)

(b)

(c)
(a) Random encoding

(b) Time delay

(c) Uniform weight



Carnegie MellonWaveform Encoding for Nonlinear Electromagnetic Tomographic Imaging

16

Convergence History
𝜷 =

 𝝐𝒌 − 𝝐𝒕𝒓𝒖𝒆
𝟐

 𝝐𝟎 − 𝝐𝒕𝒓𝒖𝒆
𝟐
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Conclusions

 Proper encoding techniques accelerate convergence of 
iterative inverse methods for nonlinear EM tomography

 Demonstrate the power of signal processing techniques for 
improving computational efficiency for solving nonlinear 
inverse problems

 Suitable for large-scale high resolution imaging applications 
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