Mood State Prediction From Speech Of Varying Acoustic Quality For Individuals With Bipolar Disorder

John Gideon¹, Emily Mower Provost¹, and Melvin McInnis²

Departments of: Computer Science and Engineering¹ and Psychiatry², University of Michigan

Overview

Bipolar disorder

Pathological mood-state swings of mania and depression A leading cause of disability – 4% of Americans affected

Current Treatment

Periodic follow-up visits for monitoring Reactively after manic/depressive episodes Costly Consequences

Clinical Need

To passively detect & predict mood and health state changes in order to intervene and prevent episodes

National Institute of Mental Health, "Bipolar Disorder In Adults." Kessler et al., "Lifetime Prevalence And Age-of-onset Distributions Of DSM-IV Disorders In The National Comorbidity Survey Replication." Angst et al., "Long-term Outcome And Mortality Of Treated Versus Untreated Bipolar And Depressed Patients: A Preliminary Report."

Problem Statement

- Speech patterns shown to reflect mood in clinic
 - Controlled environments
 - Single type of recording device
- Real world recordings
 - Variations in **background noise**
 - Variations in microphone quality

Speech recorded in the real world has large variations in quality making a distributed mobile health system using speech infeasible without controlling for these differences.

UM PRIORI Acoustic Database

- Participants: 37 subjects enrolled for 6-12 months
- Total Data: 2,400 hours across 30,000 calls
- Ground Truth: 780 Recorded weekly phone-based clinical assessments (About 15 minutes each)
 Structured clinical interview
 - Structured clinical interview

CHAI Lat

- Rated on mania and depression severity
 - Young Mania Rating Scale (YMRS)
 - Hamilton Rating Scale for Depression (HAMD)
- Insomnia? Anxiety? Weight loss?
- 23 assessments transcribed for validating segmentation
- Only used assessment calls in this analysis

Mood Label Assignment

COMPUTER SCIENCE & ENGINEERING UNIVERSITY OF MICHIGAN

Models of Phones

CHAI Lab

University of Michia

Samsung Galaxy S3	Samsung Galaxy S5	
CAMESURE T2:03 Thu: 3 May		
18 Participants	17 Participants	
456 Assessments	287 Assessments	

COMPUTER SCIENCE & ENGINEERING

UNIVERSITY OF MICHIGAN

Acoustic Differences Between Models

7

Processing Pipeline – Preprocessing

Declipping Method

CBAR

- Extrapolates clipped regions
- Minimizes pointiness (acceleration)

9

Harvilla and Stern. "Least Squares Signal Declipping For Robust Speech Recognition." Harvilla and Stern. "Efficient Audio Declipping Using Regularized Least Squares."

CBAR (Harvilla and Stern, 2014)

Declipping Method

• CBAR

- Extrapolates clipped regions
- Minimizes pointiness (acceleration)

• RBAR

- Fast approximation to CBAR
- Used in preprocessing pipeline

Noise-Robust Segmentation

11

Noise-Robust Segmentation (Cont.)

- Validation used to determine segments
 - Exceeds a threshold of 1.8
 - Minimum silence of 0.7 seconds
- Only include segments longer than two seconds
 - Subsegment into two seconds with one second overlap
 - Necessary for feature extraction

Processing Pipeline – Feature Extraction

Rhythm Features

- Both mania and depression have rhythm related symptoms
 - Mania: Speech is more frequent, quicker, and louder
 - Depression: Slowing of speech and difficulty articulating
- Uses constant two second segments
 - Extract audio envelope
 - Extract seven statistics of syllable vs supra-syllable rhythm
 - Calculate **31 statistics** over segments for call-level features
- Normalize either **globally** or by **subject**

Tilsen and Arvaniti. "Speech Rhythm Analysis With Decomposition Of The Amplitude Envelope: Characterizing Rhythmic Patterns Within And Across Languages."

Processing Pipeline – Data Modeling

Data Partitioning

- Binary cases considered
 - Euthymic vs. manic
 - Euthymic vs. depressed
- Used participant-independent testing
- Participants have at least six calls
 - At least two euthymic
 - At least two manic and/or depressed

Model	# Subjects for Mania Test	# Subjects for Depressed Test	
S 3	12	11	
S5	3	7	
Both	15	18	

Validation, Training, and Testing

- Use participant-independent validation
 - Calculate weighted information gain and rank features
- Certain experiments use a Multi-Task SVM
 - Phone device (S3/S5) is second task
 - Weight kernel function based on device
- Performance measure: Area Under the Receiver Operating Characteristic Curve (AUC / AUROC)

Results – Declipping, Normalization, and Multitask

Pipeline Test	Manic AUC	Depressed AUC
Baseline	0.57 ± 0.25	0.64 ± 0.14
Declipped Using RBAR	0.70 ± 0.17*	0.65 ± 0.15
Normalized By Subject	0.67 ± 0.19*	0.75 ± 0.14*
Multi-Task Using Baseline Preprocessing	0.68 ± 0.23*	0.66 ± 0.18
Multi-Task Using Best Preprocessing	0.72 ± 0.20*	0.71 ± 0.15

Significantly improved manic performance

- S5: Significantly more clipping in manic vs. depressed calls
- Hypothesis: Individuals speak more loudly in a manic state
- Normalization by subject significantly improves both

Results – No Speech Segmentation

Model	Manic AUC	Depressed AUC	Model	Manic AUC	Depressed AUC
S3	0.52 ± 0.22	0.66 ± 0.17	S3	0.73 ± 0.22	0.74 ± 0.10
S5	0.78 ± 0.31	0.62 ± 0.09	S5	0.79 ± 0.37	0.80 ± 0.21
Both	0.57 ± 0.25	0.64 ± 0.14	Both	0.74 ± 0.24*	0.77 ± 0.15*
Baseline			No Speech Segmentation		

Remove speech segmentation

- Divide all audio into two second segments with one second overlap
- Silence is included in features
- Accuracy significantly improves
 - Hypothesis: Rhythm features indirectly capturing information about the assessment interview
 - Requirement: Accurate segmentation to avoid misleading results

*Denotes results significantly better than baseline (paired t-test, p=0.05)

19

Conclusion

- Results demonstrate ability to counter variations in recording device quality
 - Differences include clipping, loudness, and noise
 - Combination of preprocessing, feature extraction, and data modeling

Significantly better than baseline

- Manic: 0.57 ± 0.25 → 0.72 ± 0.20
- Depressed: 0.64 ± 0.14 \rightarrow 0.75 ± 0.14

No comprehensive solution

 Techniques could also be used to increase subject comparability when performing analysis on personal calls

Thank you for listening!

Questions?

The Heinz C. Prechter Bipolar Research Fund at the University of Michigan Depression Center

