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Global Mobile Data Traffic

Figure 1: Global mobile data traffic (Source: Ericsson Mobility Report, Feb. 2015.).

• Compound annual growth rate: ∼ 40%.
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Cellular Network Capacity
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Figure 2: Expected capacity increase in cellular networks in the future based off Ericsson (Source: New
network topologies.).

• Expected future capacity growth rate: 105%× 120%× 110%−
100% = 38.6%.
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Approaches to Meet the Increasing Mobile Traffic

• Acquiring new spectrum bands;
• Developing novel spectrum sharing techniques;
• Implementing more cell sites;
• Scheduling delay-tolerant mobile data traffic;
• Performing traffic offloading;
• · · ·
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Software-defined Radio Access Networks (SoftRANs)

• Basic idea:
• abstracting all base stations as a logical centralized network con-

troller (CNC);
• simplifying network management by decoupling the control plane

from the data plane.
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Resource Scheduling in SoftRANs
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Figure 3: An illustration example of resource scheduling in an SoftRAN. The wireless service providers
(WSPs) provide diverse wireless services to the mobile terminals (MTs) over a common physical infras-
tructure managed by an CNC.
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Challenges

• In an SoftRAN, the dynamics originate from time-varying chan-
nel conditions experienced by MTs, WSPs’ competing behaviors
and bursty traffic.

• Resource scheduling schemes need to be designed scalable for
large networks.
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System Model (1/2)

• Each WSP k ∈ K serves a set Nk of Nk MTs.
• At the beginning of each time slot,

• the WSPs bid for subband access by announcing value functions
according to their bidding policies Ωk , ∀k ∈ K; and

• the CNC allocates a set of J of subbands to MTs according to
a Vickrey-Clarke-Groves (VCG) pricing mechanism.

• During time slot t, the subband allocation ytn = [{y tn,j |j ∈ J }]T

of MT n ∈ N , ∪k∈KNk satisfies
∑

n∈N y tn,j ≤ 1, ∀j ∈ J and∑
j∈J y tn,j ≤ 1, where y tn,j ∈ {0, 1} indicates the allocation of

subband j to MT n.
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System Model (2/2)

• Over time slots t = 1, 2, · · · , the network dynamics xt include
• the queue dynamics for each MT n ∈ N : bt+1

n = min{btn −
Dt

n + At
n, Lb}, where the packet departures Dt

n are determined
by the achieved data rate; and

• the channel state information (CSI) htn,j experienced by each MT
n over each subband j ∈ J , which is modelled by a discrete-time
Markov chain.

• Given Ω = (Ωk ,Ω−k), the {xt |t = 1, 2, · · · } is Markovian.
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Objective

• By designing an optimal bidding policy Ωk , each WSP k ∈ K
aims to maximize the long-term expected payoff.
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Stochastic Game

• A stochastic game formulation,
• Players: the set K of WSPs;
• Action: the value functions [{θn(xt , ytn)|n ∈ Nk}] at each time

slot t for each WSP k ∈ K;
• Payoff: the utility accumulated over all its MTs minus the pay-

ment to the CNC
∑

n∈Nk
βnf (b

t
n, ytn)− ζtk at time t for each

WSP k;
• State Transition: after performing the actions, xt → xt+1.

• Formally, for any WSP k ∈ K ,

max
Ωk

Gk (x,Ω)

= EΩ

{
(1 − γ)

∞∑
m=t

γm−t

( ∑
n∈Nk

βnf (b
m
n , y

m
n )− ζmk

)∣∣∣∣∣x = xt
}
.
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Stochastic Learning Approach (1/2)

• Focusing on the bidding policy Ωk that Gk(x, (Ωk ,Ω−k)) =
Gk(bk ,Ωk), ∀k ∈ K.

• Approximating Gk (bk ,Ωk) ≈
∑

n∈Nk
Vn (bn,Ωk), where

Vn (bn,Ωk) = max
yn

{
(1 − γ)

(
βnf (bn, yn)− ζ̄n (bn)

)
+

γ
∑

b′n
Pr {b′n|bn, yn}Vn (b

′
n,Ωk)

}
,

and ζ̄n(bn) is the shard payment of MT n.
• Defining the value function for MT n as

θn (bn, yn) = βnf (bn, yn) +
γ

1 − γ

∑
b′n

Pr
{
b′n
∣∣bn, yn}Vn

(
b′n,Ω

∗
k

)
.
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Stochastic Learning Approach (2/2)

• Defining an Q-factor as

Q∗
n(bn, yn) = (1 − γ)

(
βnf (bn, yn)− ζ̄n (bn)

)
+ γ

∑
b′n

Pr
{
b′n|bn, yn

}
Vn

(
b′n,Ω

∗
k

)
,

which can be learned using traditional Q-learning rule.
• Finally, the value function of MT n at time t,

θn
(
btn, y

t
n

)
=

1
1 − γ

(
max
yn

Qt
n

(
btn, yn

)
+ ζ̄tn

(
btn
))

.
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Numerical Results (1/2)
There are 5 WSPs and 80 subbands with the same bandwidth 500KHz.
Packets arrive into each MT n’s buffer according to an independent
Poisson arrival process with average arrival rate λnpackets/second,
and the packet sizes are exponentially distributed with average packet
size 105bits/packet.
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Figure 4: Trajectory of the average payment (1/K)
∑

k∈K ζtk paid by the WSPs to the CNC. The number
of MTs subscribed to WSP k is Nk = 20, ∀k ∈ K. The packet arrival rate of each MT n is λn = 2
packets/second, ∀n ∈ N .
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Numerical Results (2/2)
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Proposed Scheme
Myopic Scheme

Figure 5: Average number of packets in MTs’ queues
b̄ versus the number of MTs per WSP Nk . Nk is set to
be the same for all WSPs k ∈ K in each simulation.
The packet arrival rate of each MT n is λn = 2
packets/second, ∀n ∈ N .
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Proposed Scheme
Myopic Scheme

Figure 6: Average number of packets in MTs’ queues
b̄ versus the packet arrival rate of each MT λn . The
number of MTs subscribed to WSP k is Nk = 20,
∀k ∈ K. The λn is same for all MTs n ∈ N in each
simulation.

• The proposed algorithm converges fast and achieves significant
performance gain.
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Conclusions

(1) This work investigates the problem of resource scheduling in an
SoftRAN, where multiple WSPs compete subbands for serving
their MTs.

(2) A stochastic learning approach is proposed to approximate the
optimal resource scheduling policy.

(3) Numerical results validate that the proposed algorithm outper-
forms the myopic scheme.
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Thanks for your patience!

Xianfu Chen, Senior Scientist, Ph.D.
Web: www.xianfu-chen.info Email: xianfu.chen@vtt.fi
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