

Foresighted Resource Scheduling in Software-Defined Radio Access Networks

Xianfu Chen[†], Zhu Han[‡], Honggang Zhang[‡], Mehdi Bennis[‡], and Tao Chen[†]

[†]VTT Technical Research Centre of Finland Ltd, Finland [‡]Department of Electrical and Computer Engineering, University of Houston, USA [‡]Colleague of Information Science and Electronic Engineering, Zhejiang University, China [‡]Centre for Wireless Communications, University of Oulu, Finland

IEEE GlobalSIP 2015

Outline

Background

Problem

A Preliminary Work

Numerical Results

Conclusions

Global Mobile Data Traffic

Global mobile traffic (monthly ExaBytes)

Figure 1: Global mobile data traffic (Source: Ericsson Mobility Report, Feb. 2015.).

• Compound annual growth rate: $\sim 40\%$.

Cellular Network Capacity

Figure 2: Expected capacity increase in cellular networks in the future based off Ericsson (Source: New network topologies.).

• Expected future capacity growth rate: $105\% \times 120\% \times 110\% - 100\% = 38.6\%$.

VTT

Approaches to Meet the Increasing Mobile Traffic

- Acquiring new spectrum bands;
- Developing novel spectrum sharing techniques;
- Implementing more cell sites;
- Scheduling delay-tolerant mobile data traffic;
- Performing traffic offloading;

• • • •

Software-defined Radio Access Networks (SoftRANs)

- Basic idea:
 - abstracting all base stations as a logical centralized network controller (CNC);
 - simplifying network management by decoupling the control plane from the data plane.

Resource Scheduling in SoftRANs

Figure 3: An illustration example of resource scheduling in an SoftRAN. The wireless service providers (WSPs) provide diverse wireless services to the mobile terminals (MTs) over a common physical infrastructure managed by an CNC.

Challenges

- In an SoftRAN, the dynamics originate from time-varying channel conditions experienced by MTs, WSPs' competing behaviors and bursty traffic.
- Resource scheduling schemes need to be designed scalable for large networks.

System Model (1/2)

- Each WSP $k \in \mathcal{K}$ serves a set \mathcal{N}_k of N_k MTs.
- At the beginning of each time slot,
 - the WSPs bid for subband access by announcing value functions according to their bidding policies Ω_k, ∀k ∈ K; and
 - the CNC allocates a set of ${\cal J}$ of subbands to MTs according to a Vickrey-Clarke-Groves (VCG) pricing mechanism.
- During time slot t, the subband allocation $\mathbf{y}_n^t = [\{y_{n,j}^t | j \in \mathcal{J}\}]^T$ of MT $n \in \mathcal{N} \triangleq \bigcup_{k \in \mathcal{K}} \mathcal{N}_k$ satisfies $\sum_{n \in \mathcal{N}} y_{n,j}^t \leq 1, \forall j \in \mathcal{J}$ and $\sum_{j \in \mathcal{J}} y_{n,j}^t \leq 1$, where $y_{n,j}^t \in \{0,1\}$ indicates the allocation of subband j to MT n.

System Model (2/2)

- Over time slots $t = 1, 2, \cdots$, the network dynamics \mathbf{x}^{t} include
 - the queue dynamics for each MT $n \in \mathcal{N}$: $b_n^{t+1} = \min\{b_n^t D_n^t + A_n^t, L_b\}$, where the packet departures D_n^t are determined by the achieved data rate; and
 - the channel state information (CSI) $h_{n,j}^t$ experienced by each MT n over each subband $j \in \mathcal{J}$, which is modelled by a discrete-time Markov chain.
- Given $\Omega = (\Omega_k, \Omega_{-k})$, the $\{\mathbf{x}^t | t = 1, 2, \cdots\}$ is Markovian.

Objective

• By designing an optimal bidding policy Ω_k , each WSP $k \in \mathcal{K}$ aims to maximize the long-term expected payoff.

Stochastic Game

- A stochastic game formulation,
 - Players: the set \mathcal{K} of WSPs;
 - Action: the value functions [{θ_n(**x**^t, **y**^t_n)|n ∈ N_k}] at each time slot t for each WSP k ∈ K;
 - Payoff: the utility accumulated over all its MTs minus the payment to the CNC $\sum_{n \in \mathcal{N}_k} \beta_n f(b_n^t, \mathbf{y}_n^t) \zeta_k^t$ at time t for each WSP k;
 - State Transition: after performing the actions, $\mathbf{x}^t \to \mathbf{x}^{t+1}$.
- Formally, for any WSP $k \in K$,

$$\max_{\Omega_k} G_k(\mathbf{x}, \Omega) = \mathbb{E}^{\Omega} \left\{ (1 - \gamma) \sum_{m=t}^{\infty} \gamma^{m-t} \left(\sum_{n \in \mathcal{N}_k} \beta_n f(b_n^m, \mathbf{y}_n^m) - \zeta_k^m \right) \middle| \mathbf{x} = \mathbf{x}^t \right\}.$$

Stochastic Learning Approach (1/2)

- Focusing on the bidding policy Ω_k that $G_k(\mathbf{x}, (\Omega_k, \Omega_{-k})) = G_k(\mathbf{b}_k, \Omega_k), \forall k \in \mathcal{K}.$
- Approximating $G_k(\mathbf{b}_k,\Omega_k)\approx \sum_{n\in\mathcal{N}_k}V_n(b_n,\Omega_k)$, where

$$V_n(b_n,\Omega_k) = \max_{\mathbf{y}_n} \left\{ \begin{array}{l} (1-\gamma) \left(\beta_n f(b_n,\mathbf{y}_n) - \overline{\zeta}_n(b_n)\right) + \\ \gamma \sum_{b'_n} \Pr\left\{b'_n | b_n,\mathbf{y}_n\right\} V_n(b'_n,\Omega_k) \end{array} \right\},\,$$

and $\bar{\zeta}_n(b_n)$ is the shard payment of MT n.

• Defining the value function for MT n as

$$heta_n\left(b_n,\mathbf{y}_n
ight)=eta_n f\left(b_n,\mathbf{y}_n
ight)+rac{\gamma}{1-\gamma}\sum_{b_n'}\Pr\left\{b_n'ig|b_n,\mathbf{y}_n
ight\}V_n\left(b_n',\Omega_k^*
ight)$$

Stochastic Learning Approach (2/2)

• Defining an *Q*-factor as

$$\begin{aligned} \mathcal{Q}_{n}^{*}(b_{n},\mathbf{y}_{n}) &= (1-\gamma)\left(\beta_{n}f\left(b_{n},\mathbf{y}_{n}\right) - \bar{\zeta}_{n}\left(b_{n}\right)\right) \\ &+ \gamma\sum_{b_{n}^{\prime}}\Pr\left\{b_{n}^{\prime}|b_{n},\mathbf{y}_{n}\right\}V_{n}\left(b_{n}^{\prime},\Omega_{k}^{*}\right), \end{aligned}$$

which can be learned using traditional Q-learning rule.

• Finally, the value function of MT n at time t,

$$\theta_{n}\left(b_{n}^{t},\mathbf{y}_{n}^{t}\right) = \frac{1}{1-\gamma}\left(\max_{\mathbf{y}_{n}}Q_{n}^{t}\left(b_{n}^{t},\mathbf{y}_{n}\right) + \bar{\zeta}_{n}^{t}\left(b_{n}^{t}\right)\right).$$

Numerical Results (1/2)

There are 5 WSPs and 80 subbands with the same bandwidth 500KHz. Packets arrive into each MT *n*'s buffer according to an independent Poisson arrival process with average arrival rate λ_n packets/second, and the packet sizes are exponentially distributed with average packet size 10⁵ bits/packet.

Figure 4: Trajectory of the average payment $(1/K) \sum_{k \in \mathcal{K}} \zeta_k^t$ paid by the WSPs to the CNC. The number of MTs subscribed to WSP k is $N_k = 20$, $\forall k \in \mathcal{K}$. The packet arrival rate of each MT n is $\lambda_n = 2$ packets/second, $\forall n \in \mathcal{N}$.

Numerical Results (2/2)

Figure 5: Average number of packets in MTs' queues \dot{b} versus the number of MTs per WSP N_k . N_k is set to be the same for all WSPs $k \in \mathcal{K}$ in each simulation. The packet arrival rate of each MT n is $\lambda_n = 2$ packets/second, $\forall n \in \mathcal{N}$.

Figure 6: Average number of packets in MTs' queues \tilde{b} versus the packet arrival rate of each MT λ_n . The number of MTs subscribed to WSP k is $N_k = 20$, $\forall k \in \mathcal{K}$. The λ_n is same for all MTs $n \in \mathcal{N}$ in each simulation.

• The proposed algorithm converges fast and achieves significant performance gain.

vTT

Conclusions

- (1) This work investigates the problem of resource scheduling in an SoftRAN, where multiple WSPs compete subbands for serving their MTs.
- (2) A stochastic learning approach is proposed to approximate the optimal resource scheduling policy.
- (3) Numerical results validate that the proposed algorithm outperforms the myopic scheme.

Thanks for your patience!

Xianfu Chen, Senior Scientist, Ph.D. Web: www.xianfu-chen.info Email: xianfu.chen@vtt.fi

