HONEY CHATTING: A NOVEL INSTANT MESSAGING SYSTEM **ROBUST TO EAVESDROPPING OVER COMMUNICATION** KOREA UNIVERSITY Joo-Im Kim, Ji Won Yoon*

Center for Information Security Technologies (CIST), Korea University, {jooimkim, jiwon_yoon}@korea.ac.kr

INTRODUCTION

Secure Chatting

- One of methods to strengthen the security of Instant Messaging system is the message encryption.
- However, the key used for encryption has potential vulnerability to be cracked by a brute-force attacker if the key size is not long enough.
- So, we introduce a new concept of secure chatting by applying

Our Work

- We develop a Instant Messaging system (Honey Chatting) robust to eavesdropping by using the basic idea of Honey Encryption.
- In our system, we generate plausible-looking but fake plaintexts by using statistical encoding/decoding scheme to confuse the bruteforce attacker.
- Through simple experiments, we show the difference between a

Honey Encryption which makes decrypted texts with wrong keys hard to be distinguished from the decrypted text with a real key.

real message and fake messages by calculating the entropy of texts in the decrypted message.

EXPERIMENT

The Difference of Entropy

- We conduct a significance test(hypothesis test) to show difference between decrypted text with wrong and real key when applying HE scheme.
- In (a), P-value is significantly small which means there are clear distinction between M and Ms.
- In (b), moderately large P-value shows that observed data **M** is agreed with Ms. It means that M is similar with Ms, so the brute-force attacker could not notice his success.

Overall Procedure

- The sender's message **M** is encoded using the code table and encrypted with K_{Enc} .
- It passes through the communication channel such as Internet.
- The receiver decrypt it with K_{Enc} and decode it using the same code table. If $K_{Enc} = K_{Dec}$, the receiver can obtain a true message in both cases. Else If $K_{Enc} \neq K_{Dec}$, **M'** is become **false message in (a)** or plausible-looking fake message in (b).
- Therefore, Eve(brute-force attacker) would confuse to find real message.

* Here, the Statistical code table is made from the statistical coding scheme using text corpus in advance, and the sender and the receiver share it.

Statistical Coding Scheme

- Chat messages can be represented by N-gram language model, so we get the probability of consecutive characters in a sentence.
- We construct the cumulative massive function(CMF) based on the N-gram language model. CMF is used as statistical code table for HE-Encoding and HE-Decoding.
- The CMF for *i*-th character of message :

 $p_{\rm cmf}^{(i)}(c_k) = \sum_{k=0}^{S} \frac{p(x_i = c_k | \mathbf{x}_{i-1:i-n})}{\sum_{i=0}^{S} p(x_i = c_i | \mathbf{x}_{i-1:i-n})}$

- S is the number of possible character set // a~z, space, comma, period
- *n* is the order of markov process. // n=5 in our application
- $p(x_i|x_{i-1:i-n})$ is the *i*-th character influenced by previous *n*-1 characters

HONEY CHATTING SIMULATION

CONCLUSION

Situation: While Alice and Bob enjoy chatting (share a real password), a malicious Eve is trying to eavesdrop their chat messages (try to enter wrong passwords).

Text Corpus: We select text database such as movie subtitles or fictions including much dialogue rather than description in order to make fake messages to seem more like chat messages.

Connect	Disconnect
Choose File:	movies
Passwd:	realkey
UserID:	bob

[alice] hello, bob. how's it going [alice] it is simulation of our chatting program. [alice] alice and bob, who shared same secret key, [alice] can see real plain text message. [bob] however, malicious user eve will get fake message [bob] if eavesdrops their communication message.

UserID:	eve
Passwd:	wrongkey
Choose File:	movies
Connect	Disconnect

[alice] the door opens to the the table [alice] i don the first the day the been the s a street [alice] the continued to the s a beat s the phone got a [alice] he was the s a second rachel is [bob] tom s bedside and summer s in the s not to see you re : [bob] i don't was next to starts the could begins to b

Summary

- There are many chatting systems, which enhance security with technology such as message encryption.
- But the key is fundamentally vulnerable to a brute-force attack.
- Through the approach in this paper, we could build a messaging system which is robust to eavesdropping.

Future Improvement

- For the practical use in real world, we need to consider the context and grammar of messages.
- Also, the available character set should be increased. Now 30 characters: letters(a-z), space, period, and comma.
- Consider other measures and experiment methods to prove the indistinguishability of decrypted messages.