# Active Regression with Compressive-Sensing based Outlier Mitigation for Both Small and Large Outliers

Jian Zheng Xiaohua Li

Electrical and Computer Engineering Binghamton University, State University of New York

IEEE Global Conference on Signal & Information Processing 2016

### Outline



< 🗇 🕨

- < ⊒ >

ъ

Major contributions Motivations

### Major contributions

- Proposed a new active learning scheme for linear regression problems with the objective of resolving the unreliable training data labeling problem
  - Proposed two small outlier models
  - Developed a way to convert non-sparse small outliers to sparse large outliers
  - Successfully removed sparse large outliers and non-sparse small outliers

Major contributions Motivations

### **Motivations**

- Active regression: minimize the amount of training data used in regression problems by looking for the most informative ones
  - It outperforms conventional passive regression
  - But may introduce heavier labeling errors
- Human labeling errors
  - Sparse large outliers
  - Non-sparse small outliers

||▲ 同 ト ▲ 臣 ト ▲ 臣

General linear regression

• We consider the general linear regression

$$y_i = \mathbf{x}'_i \boldsymbol{\theta} + \epsilon_i + h_i v_i + o_i, \qquad (1)$$

- y<sub>i</sub>: data label
- $\mathbf{x}_i: N \times 1$  data vector
- $\theta$ :  $N \times 1$  regression vector
- $h_i v_i$ : small outliers with a scalar factor  $h_i$
- o<sub>i</sub>: large outliers
- $\epsilon_i$ : noise with zero-mean and variance  $\sigma_\epsilon^2$ 
  - Select T of the most informative training samples out of I data vectors using a pool-based active learning method proposed by Sugiyama, etc.

ヘロト ヘアト ヘヨト ヘ

Large outlier mitigation Small outlier mitigation

### Large outlier mitigation

Conventionally, use the joint optimization to estimate o

$$\{\hat{\boldsymbol{\theta}}, \hat{\mathbf{o}}\} = \arg\min_{\{\boldsymbol{\theta}, \mathbf{o}\}} \|\mathbf{y}_{tr} - \mathbf{o} - \mathbf{X}_{tr}\boldsymbol{\theta}\| + \lambda_1 \|\mathbf{o}\|_1.$$
 (2)

where

$$\hat{\boldsymbol{\theta}} = \left(\mathbf{X}_{tr}'\mathbf{X}_{tr}\right)^{-1}\mathbf{X}_{tr}'(\mathbf{y}_{tr} - \hat{\mathbf{o}}). \tag{3}$$

• When substitute  $\hat{\theta}$  to (2), the problem becomes

$$\hat{\mathbf{o}} = \arg \min_{\mathbf{o}} \left\| \left( \mathbf{I} - \mathbf{X}_{tr} (\mathbf{X}_{tr}' \mathbf{X}_{tr})^{-1} \mathbf{X}_{tr}' \right) (\mathbf{y}_{tr} - \mathbf{o}) \right\| + \lambda_1 \|\mathbf{o}\|_1.$$
(4)

イロト 不得 とくほと くほとう

3

### **Small outliers**

- Assume the *T* training data are labeled by *L* labelers and each labeler labels  $T_L = \frac{T}{L}$  data. The  $\ell$ th labeler labels the training data set  $(\mathbf{X}_{\ell}, \mathbf{y}_{\ell})$ .
- Each of the ℓth labeler has a common outlier value v<sub>ℓ</sub>, which is added to the labeling values via the weighting vector

$$\mathbf{h}_{\ell} = [h_{(\ell-1)T_{L}+1}, \cdots, h_{\ell T_{L}}]', \quad \ell = 1, \cdots, L.$$
 (5)

• We assume that  $\|\mathbf{h}_{\ell}\| = 1$  and  $|v_{\ell}| \gg \sigma_{\epsilon}$  if  $v_{\ell} \neq 0$ .

ヘロン 人間 とくほ とくほ とう

### Small outlier models

 Small outlier model 1: Assume that the weighting vector h<sub>ℓ</sub> of each labeler ℓ is unknown, but all the labelers have the same weighting vector, i.e.,

$$\mathbf{h}_{\ell} = \mathbf{h} = [h_1, \cdots, h_{T_L}]'. \tag{6}$$

Small outlier model 2: Assume that the weighting vectors h<sub>ℓ</sub> for the *L* labelers are different from each other, where ℓ = 1, 2, ··· , *L*. But the weighting vectors are assumed known a priori.

# Weighting vector estimation for model 1

For Model 1, by collecting all the *L* users' labeled data y<sub>ℓ</sub>, where ℓ = 1, ··· , *L*, we can estimate the common weighting vector h by solving the following maximization

$$\hat{\mathbf{n}} = \arg \max_{\mathbf{h}} E\left[ \|\mathbf{h}'(\mathbf{y}_{\ell} - \hat{\mathbf{o}}_{\ell})\|^2 \right]$$
 (7)

$$= \arg \max_{\mathbf{h}} \mathbf{h}' \mathbf{R}_{\mathbf{y}} \mathbf{h}, \quad \text{s.t.}, \ \|\mathbf{h}\| = 1$$
(8)

where  $\mathbf{R}_{y}$  is the correlation matrix

$$\mathbf{R}_{\mathcal{Y}} = E\left\{ (\mathbf{y}_{\ell} - \hat{\mathbf{o}}_{\ell})(\mathbf{y}_{\ell} - \hat{\mathbf{o}}_{\ell})' \right\}$$
(9)

The solution to the optimization (8) is the eigenvector of R<sub>y</sub> corresponding to its maximum eigenvalue.

Large outlier mitigation Small outlier mitigation

Non-sparse small outliers to sparse large outliers

#### We can see that

$$\begin{split} & \mathcal{E}[\|\hat{\mathbf{h}}'(\mathbf{y}_{\ell} - \hat{\mathbf{o}}_{\ell})\|^{2}] \\ &= \hat{\mathbf{h}}' \mathcal{E}\left[ (\mathbf{X}_{\ell} \boldsymbol{\theta} + \boldsymbol{\epsilon}_{\ell} + \mathbf{h} \boldsymbol{v}_{\ell})' (\mathbf{X}_{\ell} \boldsymbol{\theta} + \boldsymbol{\epsilon}_{\ell} + \mathbf{h} \boldsymbol{v}_{\ell}) \right] \hat{\mathbf{h}} \\ &= \hat{\mathbf{h}}' \left( \mathcal{E}[\boldsymbol{\theta}' \mathbf{X}_{\ell}' \mathbf{X}_{\ell} \boldsymbol{\theta}] \right) \hat{\mathbf{h}} + \sigma_{\epsilon}^{2} \hat{\mathbf{h}}' \hat{\mathbf{h}} + \hat{\mathbf{h}}' \mathbf{h}' \boldsymbol{v}_{\ell}^{2} \mathbf{h} \hat{\mathbf{h}} \\ &= \hat{\mathbf{h}}' \left( \mathcal{E}[\boldsymbol{\theta}' \mathbf{X}_{\ell}' \mathbf{X}_{\ell} \boldsymbol{\theta}] \right) \hat{\mathbf{h}} + \sigma_{\epsilon}^{2} + \boldsymbol{v}_{\ell}^{2}. \end{split}$$
(10)

where the noise power  $\sigma_{\epsilon}^2$  stays unchanged, while the outlier power is enhanced from  $|h_{(\ell-1)T_l+k}v_{\ell}|^2$  to  $|v_{\ell}|^2$ .

Large outlier mitigation Small outlier mitigation

### Non-sparse small outliers to sparse large outliers

$$z_{\ell} = \hat{\mathbf{h}}'(\mathbf{y}_{\ell} - \hat{\mathbf{o}}_{\ell}) = \hat{\mathbf{h}}' \mathbf{X}_{\ell} \boldsymbol{\theta} + \hat{\mathbf{h}}' \boldsymbol{\epsilon}_{\ell} + \hat{\mathbf{h}}' \mathbf{h} \boldsymbol{v}_{\ell}.$$
(11)

 For model 2, since the weighting vectors h<sub>l</sub> are assumed known, the new labeled data is calculated directly as

$$z_{\ell} = \mathbf{h}'_{\ell}(\mathbf{y}_{\ell} - \hat{\mathbf{o}}_{\ell}), \quad \ell = 1, \cdots, L.$$
 (12)

Large outlier mitigation Small outlier mitigation

### Non-sparse small outliers to sparse large outliers

- With (11) and (12), construct *L* new labeled training data
- Append these *L* new training data (h'<sub>ℓ</sub>X<sub>ℓ</sub>, z<sub>ℓ</sub>) to the original training data set (*T* + *L* in total), with up to *L* new large outliers contained in the data z<sub>ℓ</sub> with the magnitude of v<sub>ℓ</sub>, which guarantees the sparsity of the large outliers.

Large outlier mitigation Small outlier mitigation

## Small outliers mitigation

• Define the new T + L training data set as  $(\tilde{\mathbf{X}}, \tilde{\mathbf{y}})$ , where  $\tilde{\mathbf{X}} = [\mathbf{X}'_{tr}, \mathbf{h}'_1 \mathbf{X}_1, \cdots, \mathbf{h}'_1 \mathbf{X}_L]', \tilde{\mathbf{y}} = [\mathbf{y}'_{tr}, z_1, \cdots, z_L]'$ . We have  $\tilde{\mathbf{y}} = \tilde{\mathbf{X}}\boldsymbol{\theta} + \tilde{\boldsymbol{\epsilon}} + \tilde{\mathbf{v}},$  (13)

where

$$\tilde{\boldsymbol{\epsilon}} = [\boldsymbol{\epsilon}', \mathbf{h}_1' \boldsymbol{\epsilon}_1, \cdots, \mathbf{h}_L' \boldsymbol{\epsilon}_L]', \\ \tilde{\mathbf{v}} = [(\mathbf{H} \mathbf{v})', v_1, \cdots, v_L]'.$$
(14)

• The new outliers in (13) are sparse and large enough in magnitude.

ヘロト ヘアト ヘビト ヘビト

Large outlier mitigation Small outlier mitigation

## Small outliers mitigation

 Therefore, we can use the compressive sensing method again to estimate θ and ν v jointly as

$$\{\hat{\boldsymbol{\theta}}, \hat{\mathbf{v}}\} = \arg\min_{\{\boldsymbol{\theta}, \tilde{\mathbf{v}}\}} \|\tilde{\mathbf{y}} - \tilde{\mathbf{v}} - \tilde{\mathbf{X}}\boldsymbol{\theta}\| + \lambda_1 \|\tilde{\mathbf{v}}\|_1.$$
(15)

where,

$$\hat{\boldsymbol{\theta}} = \left(\tilde{\mathbf{X}}'\tilde{\mathbf{X}}\right)^{-1}\tilde{\mathbf{X}}'(\tilde{\mathbf{y}} - \tilde{\mathbf{v}}),$$
 (16)

• The solution to the joint optimization of (15) is

$$\hat{\mathbf{v}} = \arg \min_{\tilde{\mathbf{v}}} \left\| \left( \mathbf{I} - \tilde{\mathbf{X}} (\tilde{\mathbf{X}}' \tilde{\mathbf{X}})^{-1} \tilde{\mathbf{X}}' \right) (\tilde{\mathbf{y}} - \tilde{\mathbf{v}}) \right\| + \lambda_1 \|\tilde{\mathbf{v}}\|_1.$$
(17)

ヘロン 人間 とくほ とくほ とう

1

Simulations Conclusions

### The pseudo code for the proposed scheme

| New Robust Regression Algorithm                                                       |
|---------------------------------------------------------------------------------------|
| i) Input: Data pool { $\mathbf{x}_i, y_i, i = 1, 2, \cdots, I$ }, $\lambda_1, T, T_L$ |
| ii) Pool-based active learning: Select T training data out                            |
| of the data pool;                                                                     |
| iii) Large outlier mitigation: Estimate and remove $\hat{\mathbf{o}}$ with            |
| (3) and (4);                                                                          |
| iv) Small outlier mitigation:                                                         |
| 1) Construct new training data with (11) and (12), and                                |
| form the $T + L$ new training data $\tilde{X}$ and $\tilde{y}$ ;                      |
| 2) Estimate $\hat{\mathbf{v}}$ and $\hat{\mathbf{\theta}}$ with (17) and (16);        |

v) Output:  $\hat{\theta}$  for test data prediction.

Simulations Conclusions



Figure: 1 Regressor estimation performance with the small outlier model 1.

J. Zheng, X. Li Robust Active Regression with Compressive Sensing

Simulations Conclusions



Figure: 2 Regressor estimation performance with the small outlier model 2.

J. Zheng, X. Li Robust Active Regression with Compressive Sensing

Simulations Conclusions



Figure: 3 Prediction performance with the small outlier model 1 in the Air Quality data set.

3

Simulations Conclusions



Figure: 4 Prediction performance with the small outlier model 1 in the survey data.

イロト イポト イヨト イヨト

Simulations Conclusions

### Conclusions:

- Developed a new robust regression scheme by integrating active learning with compressive sensing to make the data labeling in linear regression problems more robust to both sparse large outliers and non-sparse small outliers;
- Proposed two small outlier models for converting non-sparse small outliers to sparse large outliers;
- Verified the robustness of the new algorithm by extensive simulations with artificial data, UCI benchmark data, as well as real survey data.

• • • • • • • • • • • • •

Simulations Conclusions

### Thank You

J. Zheng, X. Li Robust Active Regression with Compressive Sensing

★ロト★個と★注と★注と、注