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Major contributions

Proposed a new active learning scheme for linear
regression problems with the objective of resolving the
unreliable training data labeling problem

Proposed two small outlier models
Developed a way to convert non-sparse small outliers to
sparse large outliers
Successfully removed sparse large outliers and non-sparse
small outliers
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Motivations

Active regression: minimize the amount of training data
used in regression problems by looking for the most
informative ones

It outperforms conventional passive regression
But may introduce heavier labeling errors

Human labeling errors
Sparse large outliers
Non-sparse small outliers
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General linear regression

We consider the general linear regression

yi = x′iθθθ + εi + hivi + oi , (1)

yi : data label
xi : N × 1 data vector
θθθ: N × 1 regression vector
hivi : small outliers with a scalar factor hi
oi : large outliers
εi : noise with zero-mean and variance σ2

ε

Select T of the most informative training samples out of I
data vectors using a pool-based active learning method
proposed by Sugiyama, etc.
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Large outlier mitigation

Conventionally, use the joint optimization to estimate o

{θ̂θθ, ô} = arg min
{θθθ,o}
‖ytr − o− Xtrθθθ‖+ λ1‖o‖1. (2)

where
θ̂θθ =

(
X′tr Xtr

)−1 X′tr (ytr − ô). (3)

When substitute θ̂θθ to (2), the problem becomes

ô = arg min
o

∥∥∥(I− Xtr (X′tr Xtr )
−1X′tr

)
(ytr − o)

∥∥∥+ λ1‖o‖1.
(4)
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Small outliers

Assume the T training data are labeled by L labelers and
each labeler labels TL = T

L data. The `th labeler labels the
training data set (X`,y`).
Each of the `th labeler has a common outlier value v`,
which is added to the labeling values via the weighting
vector

h` = [h(`−1)TL+1, · · · ,h`TL ]
′, ` = 1, · · · ,L. (5)

We assume that ‖h`‖ = 1 and |v`| � σε if v` 6= 0.
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Small outlier models

Small outlier model 1: Assume that the weighting vector h`
of each labeler ` is unknown, but all the labelers have the
same weighting vector, i.e.,

h` = h = [h1, · · · ,hTL ]
′. (6)

Small outlier model 2: Assume that the weighting vectors
h` for the L labelers are different from each other, where
` = 1,2, · · · ,L. But the weighting vectors are assumed
known a priori.
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Weighting vector estimation for model 1

For Model 1, by collecting all the L users’ labeled data y`,
where ` = 1, · · · ,L, we can estimate the common
weighting vector h by solving the following maximization

ĥ = arg max
h

E
[
‖h′(y` − ô`)‖2

]
(7)

= arg max
h

h′Ryh, s.t., ‖h‖ = 1 (8)

where Ry is the correlation matrix

Ry = E
{
(y` − ô`)(y` − ô`)′

}
(9)

The solution to the optimization (8) is the eigenvector of Ry
corresponding to its maximum eigenvalue.
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Non-sparse small outliers to sparse large outliers

We can see that

E [‖ĥ′(y` − ô`)‖2]
= ĥ′E

[
(X`θθθ + εεε` + hv`)′(X`θθθ + εεε` + hv`)

]
ĥ

= ĥ′
(
E [θθθ′X′`X`θθθ]

)
ĥ + σ2

ε ĥ′ĥ + ĥ′h′v2
` hĥ

= ĥ′
(
E [θθθ′X′`X`θθθ]

)
ĥ + σ2

ε + v2
` . (10)

where the noise power σ2
ε stays unchanged, while the

outlier power is enhanced from |h(`−1)TL+kv`|2 to |v`|2.
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Non-sparse small outliers to sparse large outliers

For Model 1, with the estimated weighting vector ĥ, we can
construct L new labeled training data with up to L large
outliers

z` = ĥ′(y` − ô`) = ĥ′X`θθθ + ĥ′εεε` + ĥ′hv`. (11)

For model 2, since the weighting vectors h` are assumed
known, the new labeled data is calculated directly as

z` = h′`(y` − ô`), ` = 1, · · · ,L. (12)
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Non-sparse small outliers to sparse large outliers

With (11) and (12), construct L new labeled training data
Append these L new training data (h′`X`, z`) to the original
training data set (T + L in total), with up to L new large
outliers contained in the data z` with the magnitude of v`,
which guarantees the sparsity of the large outliers.
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Small outliers mitigation

Define the new T + L training data set as (X̃, ỹ), where
X̃ =

[
X′tr ,h

′
1X1, · · · ,h′1XL

]′, ỹ = [y′tr , z1, · · · , zL]
′. We have

ỹ = X̃θθθ + ε̃εε+ ṽ, (13)

where

ε̃εε = [εεε′,h′1εεε1, · · · ,h′LεεεL]′,
ṽ = [(Hv)′, v1, · · · , vL]

′. (14)

The new outliers in (13) are sparse and large enough in
magnitude.
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Small outliers mitigation

Therefore, we can use the compressive sensing method
again to estimate θθθ and ṽ jointly as

{θ̂θθ, v̂} = arg min
{θθθ,ṽ}
‖ỹ− ṽ− X̃θθθ‖+ λ1‖ṽ‖1. (15)

where,

θ̂θθ =
(

X̃′X̃
)−1

X̃′(ỹ− ṽ), (16)

The solution to the joint optimization of (15) is

v̂ = arg min
ṽ

∥∥∥(I− X̃(X̃′X̃)−1X̃′
)
(ỹ− ṽ)

∥∥∥+ λ1‖ṽ‖1. (17)
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The pseudo code for the proposed scheme

New Robust Regression Algorithm
i) Input: Data pool {xi , yi , i = 1,2, · · · , I}, λ1, T , TL
ii) Pool-based active learning: Select T training data out

of the data pool;
iii) Large outlier mitigation: Estimate and remove ô with

(3) and (4);
iv) Small outlier mitigation:

1) Construct new training data with (11) and (12), and
form the T + L new training data X̃ and ỹ;

2) Estimate v̂ and θ̂θθ with (17) and (16);
v) Output: θ̂θθ for test data prediction.
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Figure: 1 Regressor estimation performance with the small outlier
model 1.
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Figure: 2 Regressor estimation performance with the small outlier
model 2.
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Figure: 3 Prediction performance with the small outlier model 1 in the
Air Quality data set.
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Figure: 4 Prediction performance with the small outlier model 1 in the
survey data.
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Conclusions:

Developed a new robust regression scheme by integrating
active learning with compressive sensing to make the data
labeling in linear regression problems more robust to both
sparse large outliers and non-sparse small outliers;
Proposed two small outlier models for converting
non-sparse small outliers to sparse large outliers;
Verified the robustness of the new algorithm by extensive
simulations with artificial data, UCI benchmark data, as
well as real survey data.
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Thank You
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