ENEE408G Lecture-3

Image Compression

- @ URL: http://www.ece.umd.edu/class/enee408g/
- Slides included here are based on Spring 2012 offering in the order of introduction, image, video, speech, and audio. © Copyrighted 2002-2012.
- ENEE408G course was developed @ ECE Department, University of Maryland, College Park. Inquiries can be addressed to Profs. Ray Liu (kjrliu@umd.edu) and Min Wu (minwu@umd.edu).

UMCP ENEE408G Capstone -- Multimedia Signal Processing

Last Lecture

- Human visual properties
- Image enhancement
 - Visual quantization and dithering
 - Contrast stretching and histogram equalization
 - Noise removal via LPF filtering and median filtering
 - Image Sharpening
- Edge detection
- Today: image compression

(follow-up) Image enlargement / interpolation

UMCP ENEE408G Capstone -- Multimedia Signal Processing

Lec3 – Image Compression [2]

Why Need Compression?

- Savings in storage and transmission
 - Multimedia data (esp. image and video) have large data volume
 - Difficult to send real-time uncompressed video over current network
- Accommodate relatively slow storage devices
 - In case that they do not allow playing back uncompressed multimedia data in real time
 - 1x CD-ROM transfer rate ~ 150 kB/s
 - 320 x 240 x 24 fps color video bit rate ~ 5.5MB/s
 - => 36 seconds needed to transfer 1-sec uncompressed video from CD

A ARYLN T

Lec3 – Image Compression [3]

List of Compression Tools

- Lossless encoding tools
 - Entropy coding: Huffman, Lemple-Ziv, and others
 - Run-length coding
- Lossy tools for reducing redundancy
 - Quantization and truncations
- Signal analysis/processing tools to help exploit redundancy
 - Predictive coding
 - Encode prediction parameters and residues with less bits
 - Transform coding
 - Transform into a domain with improved energy compaction

PCM coding

CODEC System: enCOding and DECoding

Discussion on Improving PCM

- Quantized PCM values may not be equally likely
 - Can we do better than encode each value using same # bits?
- Example
 - P("0") = 0.5, P("1") = 0.25, P("2") = 0.125, P("3") = 0.125
 - If use same # bits for all values
 - => Need 2 bits to represent the four possibilities
 - If use less bits for likely values "0" ~ Variable Length Codes (VLC)
 - "0" => [0], "1" => [10], "2" => [110], "3" => [111]
 - Use Σ_i p_i l_i = 1.75 bits on average (i.e the expected length) ~ saves 0.25 bpp!
- Bring probability into the picture
 - Use prob. distr. to reduce average # bits per quantized sample

Entropy Coding

- Idea: use fewer bits for commonly seen values
 - Challenge: prevent ambiguity and achieve efficiency in decoding
- Examples:
 - Huffman coding (used in JPEG and MPEG)
 - Build a codebook beforehand based on data statistics
 - Lemple-Ziv coding (used in Unix)
 - Collect statistics and build codebook in run-time
- How many # bits needed?
 - "Compressability" depends on the source's characteristics
 - Limit of compression => "Entropy"
 - Measures the uncertainty, or amount of avg. information of a source

Coding a Sequence of Bits

How to efficiently encode it?

e.g. a row in a binary document image:

"000000110001010000001111..."

• Run-length coding (RLC)

- Code length of runs of "0" between successive "1"
 - run-length of "0" ~ # of "0" between "1"
 - good if often getting frequent large runs of "0" and sparse "1"
- E.g. => (7) (0) (3) (1) (6) (0) (0)
- Assign fixed-length codeword to run-length
- Or use variable-length code like Huffman to further improve
- RLC can be used to non-binary data sequence with long

run of "0"

UMCP ENEE408G Capstone -- Multimedia Signal Processing

Lec3 - Image Compression [14]

a bc

FIGURE 8.20

(a) The prediction error image resulting from Eq. (8.4-9). (b) Grav-level histogram of the original image. (c) Histogram of the prediction error.

How to Encode Correlated Sequence?

- Consider: high correlation between successive samples
- Predictive coding
 - Basic principle: remove redundancy between successive pixels and only encode residual between actual and predicted
 - Residue usually has much smaller dynamic range
 - Allow fewer quantization levels for the same MSE => get compression
 - Compression efficiency depends on intersample redundancy

M. Wu: ENEE631 Digital Image Processing (Spring 2010)

Review and Examples of Basis

• Standard basis vectors

$$\begin{bmatrix} 6\\3\\1 \end{bmatrix} = 6 \cdot \begin{bmatrix} 1\\0\\0 \end{bmatrix} + 3 \cdot \begin{bmatrix} 0\\1\\0 \end{bmatrix} + 1 \cdot \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

• Standard basis images

$$\begin{bmatrix} 2 & 2 \\ 3 & 0 \end{bmatrix} = 2 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + 2 \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + 3 \cdot \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + 0 \cdot \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

• Example: representing a vector with different basis

M. Wu: ENEE631 Digital Image Processing (Spring 2010)

Lec10 – Unitary Transform

Example of 1-D DCT

2-D DCT

UMCP ENEE408G Capstone -- Multimedia Signal Processing

Lec3 – Image Compression [24]

From Ken Lam's DCT talk 2001 (HK Polytech)

- Equivalent to represent an NxN image with a set of orthonormal NxN "basis images"
 - Each DCT coefficient indicates the contribution from (or similarity to) the corresponding basis image

Transform Coding

UMCP ENEE408G Capstone -- Multimedia Signal Processing

Lec3 – Image Compression [27]

Block-based Transform Coding

• Encoder

- Step-1 Divide an image into *m* x *m* blocks and perform transform
- Step-2 Determine bit-allocation for coefficients
- Step-3 Design quantizer and quantize coefficients (lossy!)
- Step-4 Encode quantized coefficients

How to Encode Quantized Coeff. in Each Block?

- Basic tools
 - Entropy coding ~ run-length coding, Huffman, etc.
 - Predictive coding ~ esp. for DC
- Ordering
 - zig-zag scan for block-DCT to better exploit run-length coding gain

Summary: List of Compression Tools

- Lossless encoding tools
 - Entropy coding: Huffman, Lemple-Ziv, and others (arithmetic coding)
 - Run-length coding
- Lossy tools for reducing redundancy
 - Quantization: scalar quantizer vs. vector quantizer
 - Truncations: discard unimportant parts of data
- Facilitating compression via Prediction
 - Encode prediction parameters and residues with less bits
- Facilitating compression via Transforms
 - Transform into a domain with improved energy compaction

Put Basic Tools Together:

JPEG Image Compression Standard

UMCP ENEE408G Capstone -- Multimedia Signal Processing

Lec3 - Image Compression [33]

JPEG Compression Standard (early 1990s)

- JPEG Joint Photographic Experts Group
 - Compression standard of generic continuous-tone still image
 - Became an international standard in 1992
- Allow for lossy and lossless encoding of still images
 - Part-1 DCT-based lossy compression
 - average compression ratio 15:1
 - Part-2 Predictive-based lossless compression

Sequential, Progressive, Hierarchical modes

- Sequential ~ encoded in a single left-to-right, top-to-bottom scan
- Progressive ~ encoded in multiple scans to first produce a guick, rough decoded image when the transmission time is long
- Hierarchical ~ encoded at multiple resolution to allow accessing low resolution without full decompression

JPEG 2000: based on Wavelet transf. + improved encoding

UMCP ENEE408G Capstone -- Multimedia Signal Processing

Lec3 - Image Compression [34]

Baseline JPEG Algorithm

- "Baseline"
 - Simple, lossy compression
 - Subset of other DCT-based modes of JPEG standard
- A few basics
 - 8x8 block-DCT based coding
 - Shift to zero-mean by subtracting 128 → [-128, 127]
 - Allows using signed integer to represent both DC and AC coeff.

 $C_{.}$

- Color (YCbCr / YUV) and downsample
 - Color components can have lower 0.299 0 587 spatial resolution than luminance C_{h} -0.147 -0.289
- Interleaving color components

G0.615 -0.515 - 0.100 || B

(Based on Wang's video book Chapt.1)

0 114

0.436

From Liu's EE330 (Princeton)

UMCP ENEE408G Capstone -- Multimedia Signal Processing

Y Cb Cr Components

Block Diagram of JPEG Baseline

Illustration of JPEG Baseline Algorithm

Flash Demo by Dr. Ken Lam (Hong Kong PolyTech Univ.)

[Also posted at course webpage under image project]

Lossless Coding Part in JPEG

- Differentially encode DC
 - (lossy part: DC differences are then quantized.)

• AC coefficients in one block

- Zig-zag scan after quantization for better run-length
 - save bits in coding consecutive zeros
- Represent each AC run-length using entropy coding
 - use shorter codes for more likely AC run-length symbols

Lossy Part in JPEG

- Important tradeoff between bit rate and visual quality
- Quantization (adaptive bit allocation)
 - Different quantization step size for different coeff. bands
 - Use same quantization matrix for all blocks in one image
 - Choose quantization matrix to best suit the image
 - Different quantization matrices for luminance and color components
- Default quantization table
 - "Generic" over a variety of images
- Quality factor "Q"
 - Scale the quantization table
 - Medium quality Q = 50% ~ no scaling
 - High quality Q = 100% ~ quantization step is 1
 - Poor quality ~ small Q, larger quantization step
 - visible artifacts like ringing and blockiness

UMCP ENEE408G Capstone -- Multimedia Signal Processing

Lec3 - Image Compression [43]

Quantization Table Recommended in JPEG

8x8 Quantization Table for											
Laminarioo											
16	5 1	11	10	16	24	40	51	61		1	
12	2 1	12	14	19	26	58	60	55		1	
14	1 1	13	16	24	40	57	69	56		2	
14	1 1	17	22	29	51	87	80	62		4	
18	3 2	22	37	56	68	109	103	77		9	
24	1 3	35	55	64	81	104	113	92		9	
49	9 6	64	78	87	103	121	120	101		9	
72	2 9	92	95	98	112	100	103	99		9	

8x8 Quantization Table for													
Chrominance													
	17	18	24	47	99	99	99	99					
	18	21	26	66	99	99	99	99					
	24	26	56	99	99	99	99	99					
	47	66	99	99	99	99	99	99					
	99	99	99	99	99	99	99	99					
	99	99	99	99	99	99	99	99					
	99	99	99	99	99	99	99	99					
	99	99	99	99	99	99	99	99					

UMCP ENEE408G Capstone -- Multimedia Signal Processing

Lec3 - Image Compression [44]

JPEG Compression (Q=75% & 30%)

Y Cb Cr After JPEG (Q=30%)

<u>Summary</u>

- Basic tools for compression
 - PCM coding, entropy coding, run-length coding
 - Quantization and truncation
 - Predictive coding
 - Transform coding: DCT-based

• JPEG image compression

- 8x8 Block-DCT based transform coding
- Use predictive coding, quantization, run-length coding, and entropy coding

• This week's Lab session:

– Continued on Design Project 1 => image compression

• Readings (see course webpage)

- "Data Compression": Sections 7.1 - 7.3, 7.4.1 - 7.4.11, 7.5.1 - 7.5.3

JPEG tutorial by Wallace

UMCP ENEE408G Capstone -- Multimedia Signal Processing

Lec3 – Image Compression [50]