Joint Instance and Feature Importance Re-weighting for Person Reidentification

Qin Zhou^{1,2}, Shibao Zheng^{1,2}, Hua Yang^{1,2}, Yu Wang^{1,2} and Hang Su³

¹Department of Electronic Engineering, Shanghai Jiao Tong University, ²Institution of Image Communication and Network Engineering, Shanghai Jiao Tong University ³Department of Computer Science and Technology, Tsinghua University

Definition of Person Reidentification

Person re-identification refers to the task of recognizing the same person under different non-overlapping camera views and across different time and places.

Challenges of Person Reidentification

Illumination change

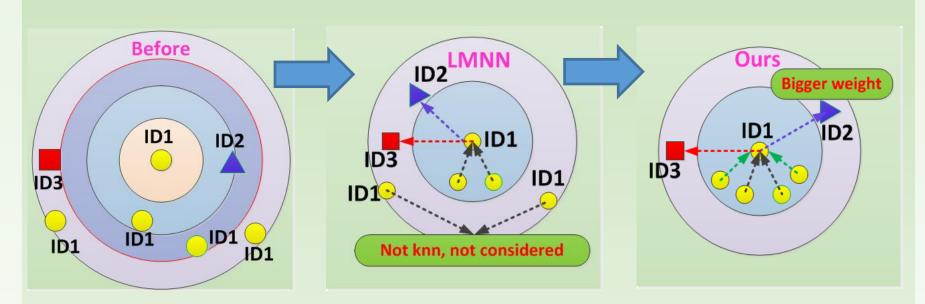
Pose change

View change

Occlusion

Drawbacks of Existing Metric Learning Algorithms

Instances are equally considered Feature channels are equally considered


Solutions

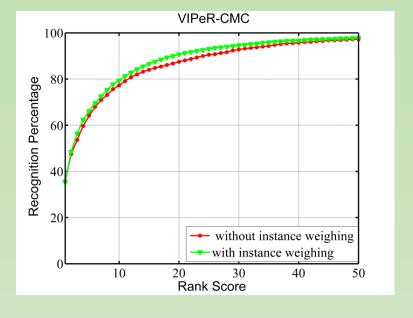
Instance importance re-weighting: Giving hard instances larger weights, such that instances sensitive to the model parameters are more carefully considered.

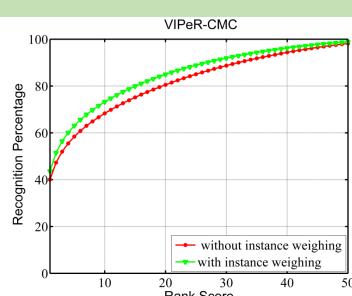
Feature importance re-weighting: Using $L_{2,1}$ regularization to automatically mine the feature importance, such that important local features play a more important role in person reidentification.

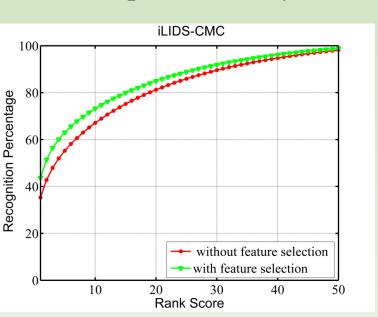
Improved LMNN for Instance Selection

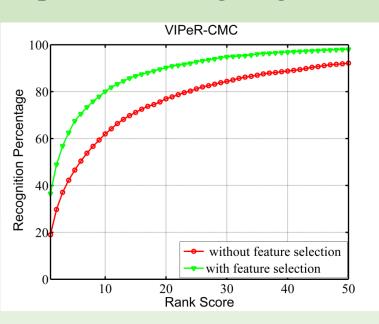
Target: Pull target neighbors together and push impostors faraway.

Improvements over LMNN:


- (1) All positive pairs are supposed to be closer than negative pairs after learning, instead of only k nearest neighbors;
- (2) Harder negative instances are supposed to be more carefully considered (given bigger weights), because they are more easily to be misclassified.


$L_{2,1}$ Regularization for Feature Selection


Insights: Patch 1 all corresponds to the background, which acts as noise for foreground appearance, thus should be neglected (related feature channel weights should be low); Patch 2 all corresponds to the main body part, which represents the key visual cue of human appearance, thus is very important (larger weights); Part of patch 3 corresponds to the foreground, the weights are supposed to be between patch 1 and patch 2.


Experimental Results

Improvements by instance importance re-weighting

Improvements by feature importance re-weighting

Conclusions

Instance importance re-weighting can slightly boost the person re-identification performance, while the feature importance re-weighting can boost the performance by a large margin, which implies that the importance of different feature channels do vary across different patches, and L_{21} regularization can automatically perform feature selection.

References

- [1] Kilian Q. Weinberger and Lawrence K. Saul, "Distance metric learning for large margin nearest neighbor classification," Journal of Machine Learning Research, vol. 10, pp. 207–244, 2009.
- [2] Yi Yang, Heng Tao Shen, Zhigang Ma, Zi Huang, and Xiaofang Zhou, "12;1norm regularized discriminative feature selection for unsupervised learning," pp. 1589–1594.
- [3] Shaogang Gong, Marco Cristani, Shuicheng Yan, and Chen Change Loy," in Person Re-Identification. 2014.