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2D Phase Retrieval
Task: For a linear function F : CN1×N2 → CM1×M2, recover X̂ ∈ X ⊆ CN1×N2

from (noisy) nonlinear measurements

Y := |F(X̂)|2 + N

Here: X̂ is an image ; X = [0, 1]N1×N2

Known: Sparsity of X̂ helpful for recovery, but usually, X̂ is not sparse itself

and dictionary for sparse representation is unknown a priori

Dictionary Learning
Modeling assumption: vector Cs 3 x ≈ Da with a sparse for unknown D

Popular model: min
D,a

1
2‖Da− x‖2

2 + λ‖a‖1

; A common solution approach: Alternating Minimization

(a-update: ISTA / gradient descent + soft-thresholding)

Variant: minD,a
1
2‖Da− x‖2

2 s.t. ‖a‖0 ≤ k (OMP for a-update)

DOLPHIn – DictiOnary Learning for PHase retrIeval

Phase Retrieval Model

Goal: Improve image reconstruction from noisy phaseless data by simultaneously learning a dictionary D ∈ Rs×n to sparsely represent patches x i of image X .

Phase-Retrieval Dictionary-Learning (DOLPHIn) Model:

min
X ,D,A

1
4
‖Y − |F(X )|2‖2F +

µ
2
‖E(X )− DA‖2F + λ

p∑
i=1

‖ai‖1 s.t. X ∈ X := [0, 1]N1×N2, D ∈ D := {D ∈ Rs×n : ‖D ·j‖2 = 1 ∀ j }

DOLPHIn Algorithm

Input: initial image estimate X (0) ∈ [0, 1]N1×N2, initial dictionary D(0) ∈ D ⊂ Rs×n, parameters µ, λ > 0, iteration limits K1,K2

Output: Learned dictionary D = D(K ), patch representations (a1, . . . ,ap) = A = A(K ), image reconstruction X = X (K )

1: for ` = 0, 1, 2, . . . ,K1 + K2 do

2: choose step size γA` and update A(`+1) ← SλγA` /µ
(
A` − γA` D

>
(`)

(
D(`)A(`) − E(X (`))

))
3: choose step size γX` and update X (`+1) ← projX

(
X (`) − γX`

(
<
(
F∗
(
F(X )� (|F(X )|2 −Y )

))
+ µR �R

(
E(X )−DA

)))
4: if ` < K1 then

5: keep D(`+1) ← D(`)

6: else

7: perform one iteration of block-coordinate descent to obtain updated dictionary D(`+1)

Notation: E(X ) = (x1, . . . , xp) extracts patches from image, R reassembles image from patches, R: weight matrix for averaging pixel values (if patches overlap), Sτ(Z ) =:= max{0, |Z | − τ} � sign(Z ) (soft-thresholding), projX (Z ) := max{0,min{1,Z}}

Convergence: Appropriate (Armijo line search) step size selection ensures convergence to a stationary point; mild further conditions give linear convergence rate.

Numerical Examples

R(DA) ≈ XDOLPHIn XWF

Reconstructions by DOLPHIn and Wirtinger Flow from 2 ternary coded diffraction patterns, corrupted by noise N such

that SNR(Y , |F(X̂ )|2) = 15 dB (512× 512 RGB image, 8× 8 patches, (µ, λ)/mY = (0.05, 0.003), K1 = 25, K2 = 50).
XDOLPHIn: PSNR 22.31 dB, SSIM 0.61; avg. ‖ai‖0: 17.27; XWF: PSNR 12.66 dB, SSIM 0.20; tDOLPHIn ≈ 119 s, tWF ≈ 44 s.

256× 256 instances 512× 512 instances

F type reconstr. (µ, λ)/mY time PSNR SSIM ∅ ‖ai‖0 (µ, λ)/mY time PSNR SSIM ∅ ‖ai‖0
GX̂ XDOLPHIn (0.5,0.105) 9.28 24.59 0.5673 (0.5,0.105) 48.29 23.41 0.6530

R(DA) 23.06 0.6618 3.81 22.67 0.6802 6.40
XWF 4.75 18.83 0.2840 – 28.94 18.80 0.3770 –

GX̂G ∗ XDOLPHIn (0.5,0.210) 33.79 22.71 0.4146 (0.5,0.210) 190.82 22.56 0.5281
R(DA) 23.70 0.7321 7.51 23.42 0.7654 11.51
XWF 32.75 22.71 0.4147 – 192.66 22.57 0.5281 –

GX̂H∗ XDOLPHIn (0.5,0.210) 33.81 22.58 0.4102 (0.5,0.210) 190.54 22.47 0.5241
R(DA) 23.63 0.7249 7.61 23.41 0.7647 11.68
XWF 32.90 22.57 0.4098 – 196.85 22.47 0.5240 –

CDP XDOLPHIn (0.05,0.003) 6.75 27.19 0.7414 (0.05,0.003) 27.52 27.34 0.7820
R(DA) 26.61 0.7650 8.04 26.33 0.7663 11.50
XWF 1.45 12.81 0.1093 – 6.63 12.98 0.1537 –

Test results for mY Gaussian-type and coded diffraction pattern (CDP) measurements. Reported are mean values (geom.
mean for CPU times) per measurement type, obtained from three instances with random X (0) and noise for each of three
256× 256 and five 512× 512 images, w.r.t. the reconstructions from DOLPHIn (XDOLPHIn and R(DA)) with parameters
(µ, λ) and (real-valued, [0, 1]-constrained) Wirtinger Flow (XWF), resp. (K1 = 25, K2 = 50, 8× 8 patches (no overlap)).

CPU times [s], PSNR [dB]. Gauss-type measurements: G : 4N1 × N2, noise-SNR 10, CDP: 2 masks, noise-SNR 20.
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