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2D Phase Retrieval Dictionary Learning

Task: For a linear function F : CNvxMe s OMixMz recover X € X C CMxNe Modeling assumption: vector C° > x =~ Da with a sparse for unknown D
from (noisy) nonlinear measurements
— ) |2 Popular model: min ||Da — x||5 + \||a
Y = |F(X)P+ N ; nin 1Da = x|+ Al
Here: X is an image ~» X = [0, 1]MxM ~> A common solution approach: Alternating Minimization

. . (a-update: ISTA / gradient descent + soft-thresholding)
Known: Sparsity of X helpful for recovery, but usually, X is not sparse itself

. o . U 1 IR
and dictionary for sparse representation is unknown a priori Variant: minp, 5|[Da — x||3 s.t. ||aljo < k (OMP for a-update)

DOLPHIn — DictiOnary Learning for PHase retrleval

Phase Retrieval Model

Goal: Improve image reconstruction from noisy phaseless data by simultaneously learning a dictionary D € IR**" to sparsely represent patches x' of image X.

Phase-Retrieval Dictionary-Learning (DOLPHIn) Model:

p
XminA%HY — |FX)PIIZ+LIEX) — DAZ+ XD Jlalh st Xex:=[0,1]"" DeD:={DeR™ : |Djla=1V,}
L, i=1

DOLPHIn Algorithm

Input: initial image estimate X € [0, 1]M> Nz Sinitial dictionary D € D C R°*", parameters 1, A > 0, iteration limits Ki, K
Output: Learned dictionary D = D), patch representations (al,...,aP) = A= A k), image reconstruction X = X
. for{=0,1,2,.... Ki+ K, do

> choose step size fyf and update A1) < SM?//L (Ag — fny&)(D(g)A(g) — 5(X(€))))

3 choose step size 4, and update X ;1) < projy (X(g) — (§R (F(X) © (|F(X)? - Y))) +uR O R(E(X) — DA)))
4 if / < K; then

5: keep D(g+1) < D(g)

6 else

7. perform one iteration of block-coordinate descent to obtain updated dictionary D /1)

Notation: £(X) = (x!,..., xP) extracts patches from image, R reassembles image from patches, R: weight matrix for averaging pixel values (if patches overlap), S.(Z) == max{0, |Z| — 7} ® sign(Z) (soft-thresholding), projy(Z) = max{0, min{1, Z}}

Convergence: Appropriate (Armijo line search) step size selection ensures convergence to a stationary point; mild further conditions give linear convergence rate.

Numerical Examples

256 x 256 instances 512 x 512 instances
F type reconstr.  (u,\)/my time PSNR SSIM  @|a'llp (u,\)/my  time PSNR SSIM & |a'llo
GX Xporpuin  (0.5,0.105)  9.28 2459 0.5673 (0.5,0.105) 4829 23.41 0.6530
R(DA) 23.06 0.6618 3.81 22.67 0.6802  6.40
Xwr 475 18.83 0.2840 = 28.94 18.80 0.3770 =
GXG* XpoLpHin (0.5,0.210) 33.79 22.71 0.4146 (0.5,0.210) 190.82 2256 0.5281
R(DA) 23.70 0.7321  7.51 23.42 0.7654 11.51
Xwr 32.75 2271 0.4147 - 192.66 2257 0.5281 =
GXH"* XpoLpHin (0.5,0.210) 33.81 2258 0.4102 (0.5,0.210) 190.54 22.47 0.5241
2e R(DA) 23.63 0.7249 7.61 2341 0.7647 11.68
S e Xwr 32.90 22.57 0.4098 = 196.85 22.47 0.5240 -
CDP  Xpotphin (0.05,0.003) 6.75 27.19 0.7414 (0.05,0.003) 2752 27.34 0.7820
o R(DA) 26.61 0.7650 8.04 26.33 0.7663  11.50
X WE 1.45 1281 0.1093 = 6.63 12.98 0.1537 =

Test results for my Gaussian-type and coded diffraction pattern (CDP) measurements. Reported are mean values (geom.
mean for CPU times) per measurement type, obtained from three instances with random Xg) and noise for each of three
256 x 256 and five 512 x 512 images, w.r.t. the reconstructions from DOLPHIn (XpoLpuin and R(DA)) with parameters
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R(DA) ~ XpoLprHin

Reconstructions by DOLPHIn and Wirtinger Flow from 2 ternary coded diffraction patterns, corrupted by noise N such (11, A) and (real-valued, [0, 1]-constrained) Wirtinger Flow (Xwr), resp. (Ki = 25, K> = 50, 8 x 8 patches (no overlap)).
that SNR(Y, | F(X)|?) = 15dB (512 x 512 RGB image, 8 x 8 patches, (11, \)/my = (0.05,0.003), K; = 25, K, = 50).
XpoLpHin: PSNR 22.31dB, SSIM 0.61; avg. ||a'llo: 17.27; Xwr: PSNR 12.66 dB, SSIM 0.20; tpoipHin ~ 119, twr ~ 44s. CPU times [s], PSNR [dB]. Gauss-type measurements: G : 4N; x N5, noise-SNR 10, CDP: 2 masks, noise-SNR 20.
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