

Graph-Based Active Learning: A New Look at Expected Error Minimization

Kwang-Sung Jun and Robert Nowak Wisconsin Institutes for Discovery, UW-Madison 12/09/2016

Graph-Based Learning

• Task: Predict Mac/PC users in a friendship network.

- Semi-supervised classification
 - A seminal work: [Zhu03a]
- Active setting: pick a few nodes and query their labels.
 - Can we choose judiciously which nodes to query?

Graph-Based Active Learning

- G=(N,E), n := |N|, w_{ij} = non-negative edge weight (undirected)
- $Y_i \in \{I, -I\}$: label of node i
- ℓ : the set of labeled nodes, $\boldsymbol{u} := N \setminus \boldsymbol{\ell}$
- For t= I...T
 - (Predict) Predict \hat{Y}_i for $i \in u$. The algorithm suffers prediction error $\frac{1}{n} \sum_{i=1}^n 1\{\hat{Y}_i = Y_i\}$, which is unknown to the algorithm.
 - (Query) choose a node $q \in u$ and request its label Y_q . Set $\ell \leftarrow \ell \setminus \{q\}$.
- For **Predict**, [Zhu03a] is the de facto standard.

Various Approaches

• Theoretical approach

(learning theory community)

- Assumption: adversarial labels.
- [Cesa-Bianchil0]: analysis on tree graphs only.
- [Dasarathy15]: a weak form of guarantee; "when can we perform a perfect prediction?".
- Graph sampling theory

(signal processing community)

- [Gadde14, Chen15]: assume the categorical labels are bandlimited signals (real-valued).
- Probabilistic approach (OURS)

(machine learning community)

- Bayesian, model-based approach. Categorical labels.
- Assumption: the labels are generated by a distribution $P(Y_{1:n})$.
- Then, we can compute the **expected error**!

Binary Markov Random Field (BMRF)

• **BMRF**:
$$\mathbb{P}(\mathbf{Y}_{1:n} = \mathbf{y}_{1:n}) = \frac{1}{Z} \exp\left(-\frac{\beta}{2} \sum_{i < j} w_{ij} (y_i - y_j)^2\right)$$
, where $\beta > 0$

- Encourages the same labels along the edges.
- Different from Ising. BMRF is for nonnegative w_{ii}, not restricted to lattice.

Expected Error Minimization (EEM)

• obs :=
$$\{Y_i = y_i\}_{i \in \ell}$$

Lookahead risk of query q •

"expected error after Yq is revealed"

$$R^{+q}(\text{obs}) := \mathbb{E}_{Y_q} \mathbb{E}_{\mathbf{Y}_{\mathbf{u} \setminus \{q\}}} \left[\frac{1}{n} \sum_{i=1}^n \mathbb{1}\{\widehat{Y}_i \neq Y_i\} \middle| Y_q, \text{obs} \right]$$

 $q^* := \arg \min_{q \in u} R^{+q}(obs) \implies One step optimal!$ Query

EEM is hard

Q: Can't you just compute $q^* := \arg \min_{q \in u} R^{+q}(obs)$?

A: No. There is no known polynomial time algorithm.

- This is where a lot of efforts were put.
 - ZLG [Zhu03b]: naïve approximation of the marginal distribution
 - VOpt [Ji12]: continuous relaxation of $Y_1, ..., Y_n$
 - SOpt [Mal3]: continuous relaxation with an alternative error criterion

Claim: None of the above is satisfactory.

Exact

TSA

																			Error
Truth	+	+	+	+	+	+	+	+	+	—	—	—	+	+	+	+	+	+	
Initial	+	+	+	+	+	+	_	_	_	_	-	-	_	_	_	_	_	_	0.50
ZLG	+	+	+	+	+	1	+	2	3	4	_	_	_	_	_	_	_	_	0.33

SOpt

Exact

TSA

• ZLG lacks exploration queries.

	I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Error
Truth	+	+	+	+	+	+	+	+	+	-	—	—	+	+	+	+	+	+	
Initial	+	+	+	+	+	+	_	_	_	_	—	-	_	_	_	_	_	_	0.50
ZLG	+	+	+	+	+	1	+	2	3	4	—	-	_	_	_	_	_	_	0.33
SOpt	+	+	+	+	+	1	+	+	_	_	—	-	_	+	+	2	+	+	0.06
Exact																			

TSA

- ZLG lacks exploration queries.
- SOpt lacks exploitation queries (non-adaptive).

	I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Error
Truth	+	+	+	+	+	+	+	+	+	-	—	—	+	+	+	+	+	+	
Initial	+	+	+	+	+	+	_	_	_	_	_	-	_	_	_	_	_	_	0.50
ZLG	+	+	+	+	+	1	+	2	3	4	—	-	_	_	_	_	_	_	0.33
SOpt	+	+	3	+	+	1	+	+	_	_	—	-	4	+	+	2	+	+	0.06
Exact																			

TSA

- ZLG lacks exploration queries.
- SOpt lacks exploitation queries (non-adaptive).

	I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Error
Truth	+	+	+	+	+	+	+	+	+	—	—	—	+	+	+	+	+	+	
Initial	+	+	+	+	+	+	_	_	_	_	—	-	_	_	_	_	_	_	0.50
ZLG	+	+	+	+	+	1	+	2	3	4	—	-	_	_	_	_	_	_	0.33
SOpt	+	+	3	+	+	1	+	+	_	_	—	-	4	+	+	2	+	+	0.06
Exact	+	+	+	+	+	1	+	+	_	_	—	_	_	+	+	2	+	+	0.00
TSA																			

- ZLG lacks exploration queries.
- SOpt lacks exploitation queries (non-adaptive).
- Exact computation balances between exploration and exploitation.

	I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Error
Truth	+	+	+	+	+	+	+	+	+	-	—	—	+	+	+	+	+	+	
Initial	+	+	+	+	+	+	_	_	_	_	—	_	_	_	_	_	_	_	0.50
ZLG	+	+	+	+	+	1	+	2	3	4	—	—	_	_	_	_	_	_	0.33
SOpt																			
Exact	+	+	+	+	+	1	+	3	+	_	-	_	4	+	+	2	+	+	0.00
TSA																			

- ZLG lacks exploration queries.
- SOpt lacks exploitation queries (non-adaptive).
- Exact computation balances between exploration and exploitation.

	I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Error
Truth	+	+	+	+	+	+	+	+	+	-	—	—	+	+	+	+	+	+	
Initial	+	+	+	+	+	+	_	_	_	_	-	-	_	_	_	_	_	_	0.50
ZLG	+	+	+	+	+	1	+	2	3	4	—	-	_	_	_	_	_	_	0.33
SOpt	+	+	3	+	+	1	+	+	_	_	-	-	4	+	+	2	+	+	0.06
Exact	+	+	+	+	+	1	+	3	+	_	—	_	4	+	+	2	+	+	0.00
TSA		_	+	+	+	1	+	3	+	_	-	_	4	+	+	2	+	+	0.00

- ZLG lacks exploration queries.
- SOpt lacks exploitation queries (non-adaptive).
- Exact computation balances between exploration and exploitation.
- TSA (ours) resembles BMRF.

Proposed: Two-Step Approximation (TSA)

Key Idea (skipping detail)

 $g(y_{1:k})$: a quadratic function with negative definite Hessian.

$$\log \left(\sum_{y_{1:k} \in \{1,-1\}^k} \exp(g(y_{1:k})) \right) \le \max_{y_{1:k} \in \{1,-1\}^k} g(y_{1:k}) + k \log(2)$$
$$\le \max_{y_{1:k} \in [-1,1]^k} g(y_{1:k}) + k \log(2)$$
A closed-form solution exists!

Experiment I:Two Boxes(n=15)

Experiment 2: DBLP

Discussion

- A close approximation of EEM that balances between exploration and exploitation.
- Future work
 - Theory on adversarial labels: are there convincing theoretical reason to prefer balancing exploration-exploitation?
 - Active Search: Find as many positive nodes as possible
 - E.g., find Mac users
 - Active Survey: Find the proportion of positive nodes as accurate as possible
 - E.g., Clinton vs Trump

Q&A Thank you!

References

- [Zhu03a] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. "Semi-supervised learning using Gaussian fields and harmonic functions." ICML, 2003
- [Zhu03b] Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. "Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions." ICML workshop on The Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining, 2003
- [Cesa-Bianchi10] Nicolo Cesa-Bianchi, Claudio Gentile, Fabio Vitale and Giovanni Zappella. "Active Learning on Graphs via Spanning Trees." COLT, 2010.
- [Dasarathy15] Gautam Dasarathy, Robert Nowak, Xiaojin Zhu. "S2: An efficient graph based active learning algorithm with application to nonparametric classification." COLT, 2015
- [Ji12] Ming Ji and Jiawei Han, "A Variance Minimization Criterion to Active Learning on Graphs." AISTATS, 2012
- [Ma13] Yifei Ma, Roman Garnett, and Jeff Schneider, "Sigma-Optimality in Active Learning on Gaussian Random Fields." NIPS, 2013.
- [Gadde14] Akshay Gadde, Aamir Anis, and Antonio Ortega. "Active semi-supervised learning using sampling theory for graph signals." KDD, 2014.
- [Chen 15] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, "Discrete signal processing on graphs: Sampling Theory." IEEE Trans. Signal Process., 2015.