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Graph-Based Learning

* Task: Predict Mac/PC users in a friendship network.

* Semi-supervised classification
* A seminal work: [Zhu03a]

* Active setting: pick a few nodes and query their labels.
* Can we choose judiciously which nodes to query?



Graph-Based Active Learning

=(N,E), n:=|N], = non-negative edge weight (undirected)
< {l,-1}:label of node i
: the set of labeled nodes, =N\?2
* Fort=1...T

» (Predict) Predict Y; for i € w.The algorithm suffers prediction error

= " 1{V; = Y;}, which is unknown to the algorithm.

n
* (Query) choose a node q & u and request its label Y.

Set £ — £\ {q}.

* For Predict, [ZhuO3a] is the de facto standard.



Various Approaches

* Theoretical approach
e Assumption: labels.
* [Cesa-Bianchil 0]: analysis on tree graphs only.

* [Dasarathyl5]: a weak form of guarantee;“when can we perform a
perfect prediction?”.

* Graph sampling theory

* [Gaddel4, Chenl5]: assume the categorical labels are
(real-valued).

* Bayesian, model-based approach. Categorical labels.
* Assumption: the labels are generated by a P(Y\.n)-
* Then, we can compute the expected error!



Binary Markov Random Field (BMRF)

* BMRF: P(Yi1., =yin) = 1exp (—— w;; (Y y3)2) ,where B >0

1<J
 Encourages the same labels along the edges.

 Different from Ising. BMRF is for nonnegative w;, not restricted to lattice.

ij?

Expected Error Minimization (EEM)

* obs :={Y; =y} e,
* Lookahead risk of query q ”expected error after Yq is revealed”

R*9(obs) := Ey, By, ., |- Z 1{Y; # Y;} | Yy, obs

* Query q* := arg min,c,, RT9(obs) | el ool




EEM is hard

Q: Can’t you just compute q* := arg min,=,, R*9(obs) ?

A: No. There is no known polynomial time algorithm.

* This is where a lot of efforts were put.
e ZLG [Zhu03b]: naive approximation of the marginal distribution
* VOpt [Jil 2]: continuous relaxation of Y, ...,Y,
* SOpt [Mal 3]: continuous relaxation with an alternative error criterion

Claim: None of the above is satisfactory.




Approx. EEM: Exploration vs Exploitation
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ZLG lacks exploration queries.

SOpt lacks exploitation queries (non-adaptive).
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Proposed: Two-Step Approximation (TSA)

Key Idea (skipping detail)

g(y14): a quadratic function with negative definite Hessian.

log( > exp(g(ylzk))) < max  g(yix) + klog(2)

ylzke{la_l}k
Y1:k 6{1’_1}k

< ) + klog(2
< ylzkren[%)lc,l]kg(yl'k) g( )

A closed-form solution exists!




Experiment |:Two Boxes(n=15)
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Experiment 2: DBLP

e Citation network, 4 classes, n=1,711
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Discussion

* A close approximation of EEM that balances between exploration and
exploitation.

 Future work

* Theory on adversarial labels: are there convincing theoretical reason to
prefer balancing exploration-exploitation?

 Active Search: Find as many positive nodes as possible
* E.g., find Mac users

* Active Survey: Find the proportion of positive nodes as accurate as
possible

* E.g., Clinton vs Trump



Q&A

* Thank you!
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