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Introduction

During the last years applications to information theory, signal
analysis, image processing, computer sciences, learning
theory, astronomy triggered new developments of harmonic
analysis on combinatorial graphs.

In particular, a sampling theory of functions on combinatorial
graphs recently became a rather active field of research.



In my talk I consider sampling of stationary and non-stationary
signals on graphs.

By non-stationary signals we understand signals which depend
on time and whose evolution in time is governed by a
Schrödinger type equation with a combinatorial Laplace
operator on the right-hand side.

It will be shown that solutions of such equations with
bandlimited initial data can be perfectly reconstructed from their
samples on the graph and on the time axis.



Introduction

We consider a finite graph G = (V ,E), where V = V (G) is the
set of |V | vertices or nodes and E = E(G) is the set of edges or
links connecting these vertices. The weight of the edge
connecting two nodes u and v is denoted by w(u, v). The
degree µ(v) of the vertex v is the sum of the edge weights
incident to node v .



The adjacency matrix W of the graph is an |V | × |V | matrix
such that W (u, v) = w(u, v).
The Hilbert space L2(G) is the set of all complex valued
functions f on V (G)

f : V → C,

with the following inner product

〈f ,g〉L2(G) = 〈f ,g〉 =
∑

v∈V (G)

f (v)g(v)µ(v). (1)



For such graph the weighted Laplace operator ∆ is introduced
via

(∆f )(v) =
∑

u∈V (G)

(f (v)− f (u))w(v ,u) . (2)

The Laplacian on a finite graph is a positive-semidefinite
self-adjoint bounded operator.



Bandlimited functions on graphs

In what follows I will develop Shannon-type sampling of
functions bandlimited on graphs.

Let 0 = λ0 < λ1 ≤ · · · ≤ λ|V |−1 be the set of eigenvalues of ∆
and let eλ0 , ....,eλ|V |−1 be an orthonormal complete set of
eigenfunctions. For a function f ∈ L2(G) it’s Fourier coefficients
cj(f ) are defined as usual

cj(f ) =
∑

v∈V (G)

f (v)eλj (v).



Bandlimited functions on graphs

Definition
A function (signal) f on a finite weighted graph G is said to be
ω-bandlimited if it has expansion

f =
∑
λj≤ω

cjeλj .

The space of ω-bandlimited signals is also called the
Paley-Wiener space and is denoted by Eω(G).



Sampling of stationary signals bandlimited on graphs

At this point I am going to discuss stationary signals on graphs.

It will be shown that analysis of lower frequencies on a graph
can be performed on a smaller subgraph. Note that in many
situations lower frequencies are more informative while higher
frequencies are usually associated with noise.



Sampling(uniqueness) sets

Definition
A subset of vertices U ⊂ V (G) is a sampling set (uniqueness
set) for a space Eω(G), ω > 0, if for any two signals from
Eω(G), the fact that they coincide on U implies that they
coincide on V (G).



Frame inequalities

The next important theorem shows that every sampling set is
associated with a family of frame inequalities.

Theorem
A set U ⊂ V (G) is a sampling set for a space Eω(G) if and only
if there exists a constant B = B(U) such that the following
frame inequalities hold

‖f‖2 ≤
∑
w∈S

|f (w)|2 ≤ B‖f‖2

for all functions in Eω(G).



Reconstruction using frames

These frame inequalities imply that projections of delta
functions δw , w ∈ U, on Eω(G) form a frame in Eω(G).
The next Corollary follows from the general theory of Hilbert
frames.

Corollary

If U is a sampling set for the space Eω(G) then there exists a
frame {Φω

u}u∈U in the space Eω(G) such that for any f ∈ Eω(G)
the following reconstruction formula holds

f (v) =
∑
u∈U

f (u)Φω
u (v), v ∈ V (G). (3)



The Cauchy problem for Schrd̈inger equation on graphs

We consider the following Cauchy problem for the Schrödinger
type equation

dg(t , v)

dt
= i∆g(t , v), g(0, v) = f (v), (4)

where v ∈ V (G), t ∈ R, i2 = −1.
If the initial function f belongs to the domain of the operator ∆
then the unique solution to this problem is given by the formula
g(v , t) = eit∆f (v), −∞ < t <∞, v ∈ V (G), where eit∆ is a
group of unitary operators in L2(G).



Sampling solutions of Schrödinger equation

We have the following result in which equally spaced sampling
points are considered.

Theorem

Assume that f ∈ PWω(G) and S ⊂ V (G) is a sampling set for
PWω(G). Then the solution g(t , v) = eit∆f (v) to the Cauchy
problem (9) at any point (t , v) ∈ R× V (G) is completely
determined by the set of samples g(kπ/σ, s), k ∈ Z, s ∈ S for
any σ > ω.



Sampling solutions of Schrödinger equation

Theorem
Moreover, the explicit reconstruction formula is given for any
vertex s ∈ S ⊂ V (G) by the formula for all t ∈ R

g(t , s) =
∑
k∈Z

g
(

kπ
σ
, s
)

sinc
σ

π

(
t − kπ

σ

)
, (5)

were convergence of the series is uniform convergence on
compact subsets of R



Sampling solutions of Schrödinger equation

To extend function (5) to entire graph one can use for every
t ∈ R the formula

g(t , v) =
∑
s∈S

g(t , s)Φω
s (v),

where {Φω
s }s∈S is a frame in PWω(G) described in (3). If the

graph is finite the sum in the last formula is finite. If the graph is
infinite then the converge holds in the norm of L2(G).



Sampling solutions of Schrödinger equation

The next Corollary follows from the fact that if ∆ is a bounded
operator then every function in L2(G) belongs to PWω(G) for
any ω ≥ ‖∆‖.

Corollary
If operator ∆ is bounded in the space L2(G) then the previous
Theorem holds for every f ∈ L2(G) as long as σ > ω ≥ ‖∆‖.



Valiron-Tschakaloff sampling/interpolation formula

The next theorem is a generalization of what is known as the
Valiron-Tschakaloff sampling/interpolation formula.

Let us remind that sinc(t) is defined as sinπt
πt , if t 6= 0, and 1, if

t = 0.



Valiron-Tschakaloff sampling/interpolation formula

Theorem

For f ∈ Eω(G), ω > 0, we have for all t ∈ R

g(t , v) = it sinc
(
ωt
π

)
∆f (v) + sinc

(
ωt
π

)
f (v)+

∑
k∈Z, k 6=0

ωt
kπ

sinc
(
ωt
π
− k

)
g
(

kπ
ω
, v
)
, (6)

where g(t , v) = eit∆f (v) and convergence is in the space of
abstract functions L2 ((−∞,∞), L2(G)) with the regular
Lebesgue measure.



Again, we consider the following Cauchy problem

dg(t , v)

dt
= i∆g(t , v), g(0, v) = f (v) ∈ L2(G), (7)

where v ∈ V (G), t ∈ R.
The unique solution to this problem is given by the formula
g(t , v) = eit∆f (v), −∞ < t <∞, v ∈ V (G), where eit∆ is a
group of unitary operators in L2(G).



We assume that for a T > 0 the solution

g(T , v) = eiT ∆f (v), v ∈ S ⊂ V (G),

is known on a subset of vertices S.

The goal of this section is to describe an algorithm which allows
for approximate reconstruction of the initial data

f (·) = g(0, ·)

using a single sample g(T , ·) = eit∆f (·), T 6= 0.

Let δv be a Dirac measure concentrated at a vertex v ∈ V (G).



Lemma
Let f ∈ PWω(G) and S be a sampling set for PWω(G). Let

Pω : L2(G)→ PWω(G)

be orthogonal projector. Then {Pωδs}s∈S is a Parseval frame in
PWω(G). Which means that the following formula holds for any
f ∈ PWω(G)

f =
∑
s∈S

〈f ,Pωδs〉 Pωδs (8)



Since for any t ∈ R one has〈
eit∆f , δv

〉
=
〈

f ,e−it∆δv

〉
,

and since PWω(G) is invariant with respect to eit∆ one has the
following:

For any T > 0 the set {
e−iT ∆Pωδs

}
s∈S

is a Parseval frame in PWω(G).



Note that

f =
∑
s∈S

〈
f ,e−iT ∆Pωδs

〉
e−iT ∆Pωδs =

∑
s∈S

〈
eiT ∆f , δs

〉
e−iT ∆Pωδs

Thus if g(t , v), v ∈ V (G), t ∈ R is the solution of the Cauchy
problem

dg(t , v)

dt
= i∆g(t , v), g(0, v) = f (v) ∈ L2(G), (9)

then we can formulate the following result.



Theorem
If f ∈ PWω(G) and S is a sampling set for PWω(G) then for any
T > 0 the initial condition f can be reconstructed from the
values of g(T , s) on the set S:

f (v) =
∑
s∈S

g(T , s)
(

e−iT ∆Pωδs

)
(v), v ∈ V (G).



In order to avoid a costly and difficult procedure of computing
the operator e−iT ∆ we are going to show that for any ε > 0
there exists such functions {ψωs }s∈S for which

‖θωs − ψωs ‖ = ‖e−iT ∆Pωδs − ψωs ‖ < ε, (10)

for all s ∈ S. For a given N ∈ N consider the polynomial

TN(x) =
N∑

n=0

(−i)n(x − α
2 )n

n!
.

One can prove the next statement.

Lemma

For a given α > 0 and ε > 0, if N ≥ max
{
αe2/2, ln(ε−1)

}
then

sup
x∈[0,α]

∣∣∣e−ix − TN(x)
∣∣∣ < ε



Irregular sampling theorem

Using this lemma and the spectral theorem we obtain that for all
t ∈ [0, α] the following estimate holds.

‖e−it∆ − TN(∆)‖ < ε.

Now, in order to satisfy (10) we introduce

ψωs = TN(∆)Pωδs.



Clearly, for a sufficiently small ε the set {ψωs }s∈S will be a frame
in PWω(G) which means

f =
∑
s∈S

〈f , ψωs 〉Ψω
s ,

where {Ψω
s }s∈S is a frame dual to {ψωs }s∈S. Since for every

f ∈ PWω(G)〈
eiT ∆f , δs

〉
=
〈

f ,e−iT ∆Pωδs

〉
≈ 〈f , ψωs 〉



we obtain that for

f̃ =
∑
s∈S

〈
eiT ∆f , δs

〉
Ψω

s =
∑
s∈S

〈
f ,e−iT ∆δs

〉
Ψω

s

the following approximate formula holds

f (v) ≈
∑
s∈S

〈
eiT ∆f , δs

〉
Ψω

s (v) = f̃ (v), v ∈ V (G). (11)



After all the error of approximation (11) can be estimated as
follows

‖f − f̃‖ =

∥∥∥∥∥∑
s∈S

〈
f ,e−iT ∆δs − ψωs

〉
Ψω

s

∥∥∥∥∥ ≤
ε‖f‖

∑
s∈S

‖Ψω
s ‖ ≤ C|V (G)|ε‖f‖. (12)



Theorem

Assume that graph G is finite. If f ∈ PWω(G) and for a T 6= 0
the function g(T , ·) = eiT ∆f (·) is known on a set S which is a
sampling set for PWω(G) then f can be approximately
reconstructed by the formula (11). Moreover, there exists a
constant C > 0 such that for any ε > 0 the error of
approximation is given by (12).



Conclusion

In the present paper we consider non-stationary signals which
propagate on a combinatorial graph and whose evolution is
governed by a Schrödinger type equation with a combinatorial
Laplace operator on the right side. It is shown that such signals
can be perfectly reconstructed from their samples on the graph
and on the time axis.
Another new result shows how to obtain an approximate
reconstruct of the initial function of a solution of the Cauchy
problem using just one signal sample of this solution.
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