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Super multi-view image coding

Super multi-view imags (1-85 views)

B |f depth maps are available, number of views can be reduced.

Depth estimation

* View synthesis

Few-view images + depth maps

View k

View k+n

Reduced data




i Free navigation

B If depth maps are available, arbitrary views can be synthesized.
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Depth map

Free navigation




epth estimation from multi-view image

B Depth is the distance between corresponding pixels (disparity).
® Corresponding pixels are searched by stereo matching.

Depth = x;-x, = X,-X; = fB/Z
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epth map by stereo matching only

ing
t. = Propagate correct depth value.

Depth errors caused by pseudo matchi
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i Graph-cuts smoothing

m  Graph-cuts algorithm repeats cost evaluation until the cost converges.
m = slow, un-predictable estimation time.

Depth layer Layer d Layer d
Layer O |
Layer d b OO
R I:> Or O
/ | A7 00 a0
Layer N — B <:| '“
Cost of pixel P Repeat | piyels adopting depth d

Initial depth map D=0

New cost C(d,P)=E(d,P)+A(D(R)-d[+|D(B)—d|)
Matching error Depth continuity

Oldcost C(D,P)=E(D,P)+A( D(R)-D(P)|+|D(B)-D(P)))
Criteria if » C(d,P) <> C(D,P), — replace D with d
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Fast depth estimation proposal

e Accelerate graph-cuts algorithm by means of dynamic programming like.

Super multi-view Depth maps

images

> I

@ Matching Fast depth
_ _ errors optimization
3-view matching
~_ /

Criteria: graph-cuts algorithm
Method: dynamic programming like




3-view matching error aggregation

* By changing depth value d from minimum to maximum, at each pixel P,
e Record smaller left or right matching error (E, or E;). = against occlusion

e 3x3 pixel matching = against pseudo matching

Left Right
Left view image | matching Center view image matching Right view image
error
error
E,(d,P) - Eq(d,P)

Minimum
selection

Matching error E(d,P)
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Non-iterative cost evaluation

Scan from depth layer O to layer N,

In depth layer d, start from center line = get depth of important object.
Zig-zag scan pixels. = Reduce depth over-propagation.
Use adopted depth values at pixel T and L for the next pixel P.
Evaluate C(d, P): Cost of current depth d

C(D,P): Cost of already determined depth D

If C(d, P)<C(D, P), adopt depth d for the pixel P temporally.
When lower half lines are end, scan upper half lines.

After one-layer scan, repeat scan in reverse direction. = smooth depth map.

Depth layer Layerd

Layer O |
Layer d
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Initial depth map D=0
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!'_ Cost function

e Cost = matching error + weight X depth continuity

Horizontal weight Vertical weight  Hysteresis weight

V V V
C{d,P)=E(d,P)+4, [D(L)—d[+4, [ D(T)-d|+5| D(P)—d|

New cost Matching error Horizontal continuity Vertical continuity Hysteresis

C(D,P)=E(D,P)+4, | D(L)-D(P)|+4, | D(T)—D(P)

Previous Matching error Horizontal continuity Vertical continuity
cost

if C(d,P) <C(D,P),—adopt d

No summation New depth
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Correct depth propagation

* Propagate depth value at large luminance change to other area.
= Change depth continuity weight when edge exists.

Light weight Heavy weight Light weight

1
O O /A
A U A

_________________

Depth level

Scan direction Reliable depth

Depth propagation direction
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Edge adaptation

e |If luma difference between left pixel L and right pixel R, or top pixel T and
bottom pixel B > threshold,

e = edge = Multiply reduction coefficient p to depth continuity weight A.
* Not using center pixel = increases detection sensitivity for blurred edges.

if I(L)—1(R)>th =horizontal edge =4, =4,%p
if I(T)—1(B)>th =>vertical edge =4, =4, xp

Center view image

e

B
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Depth level after falling edge

If background is less textured, preventing foreground depth propagation is difficult.

To ease such propagation, change the scan direction line by line.

Depth level

Scan direction
—0 O/ O
Depth propagation direction

Reliable depth

Scan direction in the next line
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Test Image for experiment

CG image:

Shark

Camera image:

Champagne

X
Tower ! (1280 X 960)

Pantomime (1280 X 960)

NICD View49 Views0 Views1 )

—

(1920 X 1088)

Ll (1920 x 1088)
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e Parameters are currently determined empirically.

ast depth estimation parameter

Item Shark Bee Champagne |Pantomime
Min Disparity Search Range | -7 -10 0 0

Max Disparity Search Range |5 3 28 15

Search Level 4 4 4 4
Smoothing Coef 1 (A) 1.0 1.0 1.0 2.0
Smoothing Coef 2 (p) 0.1 0.1 0.1 0.1
Smoothing Coef 3 (5) 0.02 0.02 0.01 0.04

0 1n case luma <20 0.5 0.5 0.25 1.0
Threshold (th) 10 30 30 20
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iShark estimated depth

B Depth estimation speed of proposed is 68-times faster than of Graph-Cuts.

Proposed (10sec)

Shark: 1920 X 1088 pixels

Proposed  Graph-cuts
Continuity weight A=1.0 A=1.0
Edge weight p=0.1 -
Hysteresis weight  6=0.02 -
Edge threshold th=10 -

Graph-cuts (690sec)

Time (sec)
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i Synthesized Shark from the depth

B Center view was synthesized from estimated left and right depth maps.
M Average PSNR is +0.3dB better than Graph-cuts result.
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Fast (11.8sec) 5

Bee: 1920 X 1088 pixels

Proposed  Graph-cuts
Continuity weight A=1.0 A=1.0
Edge weight p=0.1 -
Hysteresis weight  6=0.02 -
Edge threshold th=30 -
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Bee estimated depth

e Depth estimation speed of proposed is 100 times faster than of Graph-Cuts.
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e Average PSNR is about -0.3dB lower than Graph-cuts result.

Fast (37.5dB) @ /"
??ﬁs- k.. '£"Q \ m -

Baseline length between left and right views:
2 views
BL=3.7mm X 2 views = 7.4 mm
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Champagne Tower estimated depth

e Depth estimation speed is about 110-times faster than Graph-Cuts.

Champagne Tower: 1280 X 960 pixels
Proposed Graph-cuts

Continuity weight A=1.0 A=1.0 = —o—Fast
' = - 3
Edge wel.ght | p=0.1 2 100 = Graph-cuts
Hysteresis weight 6=0.01 - £
(6=0.25/luma<20) = — ﬂ[')p °
Edge threshold th=30 - 10
1 - |
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Synthesized Champagne Tower

e Average PSNR loss is about -0.7dB compared to Graph-cuts result.
Fast (31.1dB) : Graph-cuts (30.8dB) DP (16.5dB)
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Pantomime estimated depth

e Depth estimation speed is about 116-times faster than Graph-Cuts.

Fast (6.7sec) Graph-cuts (778sec)

Pantomime: 1280 X 960 pixels Pantomime depth estimation time
Proposed Graph-cuts

. . < 100 Fas
Continuity weight ~ A=2.0 A=1.0 2 ¥cht
Edge weight p=0.1 - “§’ DP
Hysteresis weight 6=0.04 - =10 +

(6=1.0/luma<20)

Edge threshold th=20 - .
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Synthesized Pantomime

e Average PSNR loss is about -1.0 dB compared to Graph-cuts result.

Fast (35.2dB) Graph-cuts (35§4dB) DP (21.4dB)

Baseline length between left and right views:
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!|_ Conclusion

« A fast and high-quality depth estimation algorithm was
proposed.

* Proposed algorithm accelerated depth estimation speed by 68-
116 times faster than a Graph-Cuts algorithm.

e Estimated depth map quality is +0.3 to -1.0dB higher or lower
than Graph-Cuts algorithm for super multi-view image
synthesis.

« Depth estimation time is determined by the image size and
number of depth layers, which is useful for implementation.
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