1. Compressed Sensing

In compressed sensing (CS), we aim to learn a sparse vector & €
RY from the measurement:

y=Ax + w, (1)
where

mN > M,

B A c RY*YN ig a measurement matrix that mixes the sparse
vector,

B w is an additive Gaussian noise.

Many algorithms proposed for CS recovery including greedy algo-
rithms and convex based algorithms. However, most of the algo-
rithms converge slowly or have high complexity.

2. Approximate Message Passing (AMP)

AMP [1] is based on message passing.

algorithm with high converge rate and low complexity:.

[t’s an efficient iterative

Algorithm 1 AMP algorithm

1: inputs:

Ayx)y=0,2=1y
2fort—()1223 k—1do
3 67 = %

4: r,=x,+ Az
5 Zip1 = (e, O4)
6 <41 — Y — Aim_l + thiV{Dt('T’t)}/M
7. end for
f
X
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The messages passing in a factor graph

B Intuitively, We can construct a factor graph of . By

approximating messages in the factor graph under large NV and
dense A, AMP can be derived.

Bz, div{Ds(r;) } /M is the onsager item. It’s important to ensure
that r; is Gaussian distributed.

B When A is a 1.i.d. Gaussian random matrix, a state evolution

(SE) characterizes the MSE of AMP [2].

B The performance of AMP can’t be guaranteed for
some matrixes, such as partial DCT matrix.

3. Motivation

We want to design a CS recovery algorithm with the
following characters:

B The explicit input signal prior is not needed.

B [t can handle a variety of different types of random sensing
matrixes.

4. Orthogonal AMP (OAMP)

OAMP [3] works under various matrixes, such as i.i.d. random

Gaussian matrix, random orthogonal matrix, etc.

Algorithm 2 OAMP algorithm

1: inputs:
Ay, o &)=0,z0=1y
fort—0123 k do

o =
t tr(ATA)
T = il?t -+ Wtzt

2:

3

4

5: 0'752 — (D(Utz)
6 LTip1 = Dt("‘t, 575)
/ zZi1 =Y — Ay
3. end for

B The ideal of OAMP comes form Turbo principle [4]. Turbo
principle is a kind of message passing principle.

B Extrinsic informations pass between two decoders like the
messages passing through the factor graph.

B In OAMP the onsager item vanished, and a divergence free
(divergence equals to 0) constraint is imposed on the nonlinear
function n:(r).

5. A Key Observation

Similar to AMP, in each iteration of OAMP, r; = &; + W;2z; can
be modeled as a white Gaussian noise additive signal:

Tt = Lo+ T€, (2)

where e ~ N (0, I).
The following figures show the distribution of the Gaussian noise
part of r;
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6. State Evolution of OAMP

We use the SE below to characterize OAMP
th — (I)(th)v

1
e = B (1D (@0 + me) - )
where the expectation is taken over e ~ N(0,I), and vy =

|||/ N. For partial orthogonal sensing matrix,

N —-—M
O(v7) = i v; + o,

(3)

(4)

/hipeng Xue*

7. Denoising-based OAMP (D-OAMP)

D-OAMP is based on OAMP. We construct a divergence free de-
noiser from any chosen denoiser D(r):

D(r) = C (ﬁ(r) _ %div (D(r)) r) | (5)

div {ﬁ(r)} is the divergence of D(r). It’s clear the divergence of
(5) is zero.

Based on the model (2), the tuning of parameter C' is based on
stein’s unbiased risk estimate (SURE) |5|, we choose C' by mini-
mizing the SURE:

—_—

: 1
MSE = || D(r) = 7| -

2% 5
\ ~ div{D(r)} — 1
= AID(r) — 7| =7 (6)

| A . 2 2
= ~lic (D(r) = div{D(r)}r) —r|* = 7,
where the second equality is due to the fact that D(r) is divergence

free. The optimal C' that minimizes (6) (which is a quadratic
function of C') is given by

— div{D(r)}r)
— div{D(r)}r|>

D )

8. Denoisers for D-OAMP

To apply D-OAMP in image applications, we exploit the rich lit-

erature on image denoising.

B SURE-LET denoiser

L)

Choosing denoiser D(r) as a SURE-LET denoiser [6]. A SUR:
LET denoiser is a linear combination of multiple elementary

denoisers. Thus, the constructed divergence free denoiser has
the following form:

D(r) = § Ch (ﬁk(r) _ %div{f)k(r)}r) | 3)

Denote C* = |CF, ,C]" where {C}} is the optimal
value of {C}} that minimize SURE. Let

G, = Di(r) — le{Dk( )}r and define M; ; = G| G,
b=|Gir,Gir,... GLr|!

combining coefficients:

. we obtain the following optimal

C*= M'b. (9)

In the numerical results, we choose ﬁ(r) as the the piecewise
linear kernel in |7] and denote the algorithm as LET-OAMP.

B BM3D denoiser

We can choose D(r) as a BM3D denoiser [8]. The divergence of

BM3D denoiser has no explicit expression, we can use Monte
Carlo method [9] to compute the divergence. Let e ~ N (0, I)
be an i.i.d. random Gaussian vector. The divergence of D(r)

can be estimated as:
{ L D {
r' + 56;) (r )) } | (10)

( D
div{D(r')} ~ E.{e" ( (
where 0 is a small constant. The expectation in (10) can be

\

approximated by sample average. It is observed in |9] that one
sample is good enough for high-dimensional problems.
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We choose LET-OAMP to recover sparse signals. The performance

charactered

the following figures (noise level: 50dB, sparsity rate: 0.2, mea-

9. Sparse Signal Recovery

surement rate: 0.5).

D-OAMP: A DENOISING-BASED SIGNAL RECOVERY ALGORITHM
FOR COMPRESSED SENSING
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by normalized mean square error (NMSE) is shown in
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10. Natural Image Reconstruction

For natural image reconstruction, we adopt BM3D denoiser to
D-OAMP (BM3D-OAMP). Under partial DCT random sensing
matrix, the constructed images using BM3D-OAMP are shown in
the following figures.
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(a) BM3D-AMP, PSNR: 23.5dB.  (b) BM3D-OAMP, PSNR. 27.1dB.

Reconstruction Barbara using D-AMP and D-OAMP, the measurement rate is
0.05.

When measurement rate is very low (up to 0.05), BM3D-OAMP
can also reconstruct Barbara with high PSNR (27.1dB).
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11. More Numerical Results

More detailed numerical results about natural image reconstruction using D-OAMP and D-AMP are listed below.

Image name Lena Boat Barbara Fingerprint
Measurement rate 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70%
EM-GM-GAMP 26.89 29.50 32.38 24.70 27.7/8 30.95 2447 27.69 32.14 22.51 26.04 29.58
LET-AMP 22.53 30.78 33.74 21.51 29.00 3242 19.69 28.92 3246 1748 27.25 31.11
LET-OAMP 27.72 31.12 34.80 25.70 29.44 33.54 25.49 29.36 33.70 23.60 27.82 32.48
BM3D-AMP 34.72 3820 38.98 34.09 34.70 3792 35.15 3824 41.39 28.97 33.18 37.00
BM3D-OAMP 35.50 38.26 42.36 34.59 37.60 41.28 36.51 39.83 43.35 31.01 35.24 39.79

PSNR of reconstructed images under orthogonal random sensing matrix

Image name

Barbara Fingerprint

Lena Boat

\/Ieasurement rate 30% 509% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70%
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r

[-AMP

12.68 12.47 12.29/12.48 12.7 12.75 12.49 12.45 12.83 12.74 12.41 13.57

r

[-OAMP

4.60 3.97 2.72 4.39 3.86 3.33 4.32 3.72 3.45 7.95 5.1 4.92

Reconstruction time of images under orthogonal random sensing matrix

D-OAMP outpertorm D-AMP in both reconstruction PSNR and time.

12. Conclusions

B The recovery quality of D-OAMP is the best of all existing CS
recovery algorithms under partial orthogonal sensing matrixes.

B D-OAMP converges faster comparing to other existing
algorithms under i.i.d. Gaussian and partial orthogonal matrix.

B By adopting different denoisers, D-OAMP can be used in many
scenarios, such as image reconstruction and matrix recovery.
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