

1. Compressed Sensing

In compressed sensing (CS), we aim to learn a sparse vector $\boldsymbol{x} \in$ \mathbb{R}^N from the measurement:

$$y = Ax + w$$
,

where

 $\blacksquare N > M,$

- $\mathbf{A} \in \mathbb{R}^{M \times N}$ is a measurement matrix that mixes the sparse vector.
- $\blacksquare w$ is an additive Gaussian noise.

Many algorithms proposed for CS recovery including greedy algorithms and convex based algorithms. However, most of the algorithms converge slowly or have high complexity.

2. Approximate Message Passing (AMP)

AMP [1] is based on message passing. It's an efficient iterative algorithm with high converge rate and low complexity.

Algorithm 1 AMP algorithm 1: inputs:

 $oldsymbol{A},oldsymbol{y}$, $\hat{oldsymbol{x}}_0=0,oldsymbol{z}_0=oldsymbol{y}$

2: for $t = 0, 1, 2, 3, \dots, k - 1$ do

3: $\hat{\sigma}_t^2 = rac{\|oldsymbol{z}_t\|^2}{M}$

4: $\boldsymbol{r}_t = \boldsymbol{x}_t + \boldsymbol{A}^T \boldsymbol{z}_t$

5:
$$\hat{\boldsymbol{x}}_{t+1} = \eta_t(\boldsymbol{r}_t, \hat{\boldsymbol{c}})$$

- 6: $oldsymbol{z}_{t+1} = oldsymbol{y} oldsymbol{A} \hat{oldsymbol{x}}_{t+1} + oldsymbol{z}_t \mathsf{div}\{D_t(oldsymbol{r}_t)\}/M$
- 7: end for

The messages passing in a factor graph

- Intuitively, We can construct a factor graph of \boldsymbol{x} . By approximating messages in the factor graph under large N and dense \boldsymbol{A} , AMP can be derived.
- $\mathbf{z}_t \operatorname{div} \{D_t(\mathbf{r}_t)\}/M$ is the onsager item. It's important to ensure that \boldsymbol{r}_t is Gaussian distributed.
- \blacksquare When A is a i.i.d. Gaussian random matrix, a state evolution (SE) characterizes the MSE of AMP [2].
- The performance of AMP can't be guaranteed for some matrixes, such as partial DCT matrix.

3. Motivation

We want to design a CS recovery algorithm with the following characters:

- The explicit input signal prior is not needed.
- It can handle a variety of different types of random sensing matrixes.

Gaussian matrix, random orthogonal matrix, etc. Algorithm 2 OAMP algorithm

1: inputs:

 $oldsymbol{A},oldsymbol{y},\sigma^2, \hat{oldsymbol{x}}_0=0,oldsymbol{z}_0=oldsymbol{y}$ 2: for $t = 0, 1, 2, 3 \dots, k$ do $\hat{v}_t = rac{\|oldsymbol{z}_t\|^2 - M\sigma^2}{tr(oldsymbol{A}^Toldsymbol{A})}$ $oldsymbol{r}_t = \hat{oldsymbol{x}}_t + oldsymbol{W}_t oldsymbol{z}_t$ $\hat{\sigma}_t^2 = \Phi(\hat{v}_t^2)$ $\hat{\boldsymbol{x}}_{t+1} = D_t(\boldsymbol{r}_t, \hat{\sigma}_t)$ $oldsymbol{z}_{t+1} = oldsymbol{y} - oldsymbol{A} \hat{oldsymbol{x}}_{t+1}$

8: end for

- The ideal of OAMP comes form Turbo principle [4]. Turbo principle is a kind of message passing principle.
- Extrinsic informations pass between two decoders like the messages passing through the factor graph.
- In OAMP the onsager item vanished, and a divergence free (divergence equals to 0) constraint is imposed on the nonlinear function $\eta_t(r_t)$.

Similar to AMP, in each iteration of OAMP, $\boldsymbol{r}_t = \hat{\boldsymbol{x}}_t + \boldsymbol{W}_t \boldsymbol{z}_t$ can be modeled as a white Gaussian noise additive signal:

$$\boldsymbol{r_t} = \boldsymbol{x}_0 + au_t \boldsymbol{e}$$

where $\boldsymbol{e} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$. part of \boldsymbol{r}_t

We use the SE

where the exp $\| \boldsymbol{x}_0 \|^2 / N$. For

 $\Phi(v_t^2) = \frac{N - M}{N - M} v_t^2 + \sigma^2.$

D-OAMP: A DENOISING-BASED SIGNAL RECOVERY ALGORITHM FOR COMPRESSED SENSING Junjie Ma[†] Xiaojun Yuan*

Zhipeng Xue*

* School of Information Science and Technology, ShanghaiTech University

4. Orthogonal AMP (OAMP)

OAMP [3] works under various matrixes, such as i.i.d. random

5. A Key Observation

The following figures show the distribution of the Gaussian noise

7. Denoising-based OAMP (D-OAMP)

D-OAMP is based on OAMP. We construct a divergence free denoiser from any chosen denoiser $\hat{D}(\boldsymbol{r})$:

$$D(\boldsymbol{r}) = C\left(\hat{D}(\boldsymbol{r}) - \frac{1}{N}\operatorname{div}\left\{\hat{D}(\boldsymbol{r})\right\}\boldsymbol{r}\right).$$
 (5)

div $\{\hat{D}(\boldsymbol{r})\}$ is the divergence of $\hat{D}(\boldsymbol{r})$. It's clear the divergence of () IS ZEFO.

Based on the model (2), the tuning of parameter C is based on stein's unbiased risk estimate (SURE) [5], we choose C by minimizing the SURE:

$$\widehat{\text{MSE}} = \frac{1}{N} \|D(\mathbf{r}) - \mathbf{r}\|^2 + \frac{2\tau^2}{N} \text{div}\{D(\mathbf{r})\} - \tau^2 = \frac{1}{N} \|D(\mathbf{r}) - \mathbf{r}\|^2 - \tau^2$$
(6)
$$= \frac{1}{N} \|C\left(\hat{D}(\mathbf{r}) - \text{div}\{\hat{D}(\mathbf{r})\}\mathbf{r}\right) - \mathbf{r}\|^2 - \tau^2,$$

where the second equality is due to the fact that $D(\mathbf{r})$ is divergence free. The optimal C that minimizes (6) (which is a quadratic function of C) is given by

$$C^{\star} = \frac{\boldsymbol{r}^{T} \left(\hat{D}(\boldsymbol{r}) - \operatorname{div} \{ \hat{D}(\boldsymbol{r}) \} \boldsymbol{r} \right)}{\| \hat{D}(\boldsymbol{r}) - \operatorname{div} \{ \hat{D}(\boldsymbol{r}) \} \boldsymbol{r} \|^{2}}.$$
(7)

8. Denoisers for D-OAMP

To apply D-OAMP in image applications, we exploit the rich literature on image denoising.

- SURE-LET denoiser
- Choosing denoiser $\hat{D}(\mathbf{r})$ as a SURE-LET denoiser [6]. A SURE LET denoiser is a linear combination of multiple elementary denoisers. Thus, the constructed divergence free denoiser has the following form:

$$D(\boldsymbol{r}) = \sum_{k=1}^{K} C_k \left(\hat{D}_k(\boldsymbol{r}) - \frac{1}{N} \operatorname{div} \{ \hat{D}_k(\boldsymbol{r}) \} \boldsymbol{r} \right).$$
(8)

Denote $C^{\star} \equiv [C_1^{\star}, C_2^{\star}, \dots, C_K^{\star}]^T$ where $\{C_k^{\star}\}$ is the optimal value of $\{C_k\}$ that minimize SURE. Let

 $\boldsymbol{G}_k \equiv \hat{D}_k(\boldsymbol{r}) - \operatorname{div}\{\hat{D}_k(\boldsymbol{r})\}\boldsymbol{r}, \text{ and define } M_{i,j} \equiv \boldsymbol{G}_i^T \boldsymbol{G}_j,$ $\boldsymbol{b} \equiv [\boldsymbol{G}_1^T \boldsymbol{r}, \boldsymbol{G}_2^T \boldsymbol{r}, \dots, \boldsymbol{G}_K^T \boldsymbol{r}]^T$. we obtain the following optimal combining coefficients:

$$\boldsymbol{C}^{\star} = \boldsymbol{M}^{-1} \boldsymbol{b}. \tag{9}$$

In the numerical results, we choose $\hat{D}(\boldsymbol{r})$ as the the piecewise linear kernel in [7] and denote the algorithm as LET-OAMP. ■ BM3D denoiser

We can choose $\hat{D}(\boldsymbol{r})$ as a BM3D denoiser [8]. The divergence of BM3D denoiser has no explicit expression, we can use Monte Carlo method [9] to compute the divergence. Let $\boldsymbol{e} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$ be an i.i.d. random Gaussian vector. The divergence of $D(\mathbf{r})$ can be estimated as:

div
$$\{D(\mathbf{r}^t)\} \approx E_{\mathbf{e}} \left\{ \mathbf{e}^T \left(\frac{D(\mathbf{r}^t + \delta \mathbf{e}) - D(\mathbf{r}^t)}{\delta} \right) \right\},$$
 (10)

where δ is a small constant. The expectation in (10) can be approximated by sample average. It is observed in [9] that one sample is good enough for high-dimensional problems.

[†]Department of Electronic Engineering, City University of Hong Kong

9. Sparse Signal Recovery

We choose LET-OAMP to recover sparse signals. The performance charactered by normalized mean square error (NMSE) is shown in the following figures (noise level: 50dB, sparsity rate: 0.2, measurement rate: 0.5).

10. Natural Image Reconstruction

For natural image reconstruction, we adopt BM3D denoiser to D-OAMP (BM3D-OAMP). Under partial DCT random sensing matrix, the constructed images using BM3D-OAMP are shown in the following figures.

Original Barbara.

(a) Divide init, i bitte. 20.0 (b) Divide of the init, i bitte. 21.1 (a)Reconstruction Barbara using D-AMP and D-OAMP, the measurement rate is

When measurement rate is very low (up to 0.05), BM3D-OAMP can also reconstruct Barbara with high PSNR (27.1dB).

11. More Numerical Results

More detailed numerical results about natural image reconstruction using D-OAMP and D-AMP are listed b													
Image name	Lena			Boat				Barbara			F		
Measurement rate	30%	50%	70%	30	% 5	50%	70%	30%	50%	5 70	%	30%	
EM-GM-GAMP	26.89	29.50	32.38	24.'	70 2	7.78	30.95	24.47	27.69	32.1	14	22.51	
LET-AMP	22.53	30.78	33.74	21.4	51 2	9.00	32.42	19.69	28.92	32.4	46	17.48	
LET-OAMP	27.72	31.12	34.80) 25.	70 2	9.44	33.54	25.49	9 29.3	6 33.	70	23.6	
BM3D-AMP	34.72	38.20	38.98	34.0)9 34	4.70	37.92	35.15	38.24	41.	39	28.97	
BM3D-OAMP	35.50	38.26	42.36	3 4.	59 3	7.60	41.28	36.51	L 39.8	3 43.	35	31.0	
PSNR of reconstructed images under orthogonal random sensing matrix													
Image name	Image name		Lena			Boat			Barbara			Finge	
Measuremen	t rate	30%	50% 7	0%	30%	50%	70%	30%	50%	70%	30 ⁰ /	% 50	
LET-AMP		12.68	12.47 1	2.29	12.48	8 12.7	12.75	12.49	12.45	12.83	12.7	4 12	
LET-OAMP		4.60	3.97 2	2.72	4.39	3.86	5 3.33	4.32	3.72	3.45	7.9	5 5.	
	Reconstruction time of images under orthogonal random sensing matrix												

D-OAMP outperform D-AMP in both reconstruction PSNR and time.

below.

ingerprint 50% 70%26.04 29.58 8 27.25 31.11 $60 \ 27.82 \ 32.48$ 33.18 37.00 $01 \ 35.24 \ 39.79$

erprint 0% 70%

.41 13.57 4.92

12. Conclusions

- The recovery quality of D-OAMP is the best of all existing CS recovery algorithms under partial orthogonal sensing matrixes.
- D-OAMP converges faster comparing to other existing
- algorithms under i.i.d. Gaussian and partial orthogonal matrix. ■ By adopting different denoisers, D-OAMP can be used in many
- scenarios, such as image reconstruction and matrix recovery.

References

- [1] D. L. Donoho, A. Maleki, and A. Montanari, "Message-passing algorithms for compressed sensing," Proceedings of the National Academy of Sciences, vol. 106, no. 45, pp. 18914–18919, 2009.
- [2] M. Bayati and A. Montanari, "The dynamics of message passing on dense graphs, with applications to compressed sensing," vol. 57, no. 2, pp. 764–785, Feb. 2011.
- [3] J. Ma and L. Ping, "Orthogonal AMP," arXiv preprint arXiv:1602.06509, 2016.
- [4] J. Ma, X. Yuan, and L. Ping, "Turbo compressed sensing with partial DFT sensing matrix," vol. 22, no. 2, pp. 158–161, Feb
- [5] C. M. Stein, "Estimation of the mean of a multivariate normal distribution," The annals of Statistics, pp. 1135–1151, 1981.
- [6] T. Blu and F. Luisier, "The SURE-LET approach to image denoising," vol. 16, no. 11, pp. 2778–2786, 2007.
- [7] C. Guo and M. E. Davies, "Near optimal compressed sensing without priors: Parametric SURE approximate message passing," vol. 63, no. 8, pp. 2130–2141, 2015.
- [8] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising with block-matching and 3D filtering," in *Electronic* Imaging 2006. International Society for Optics and Photonics, 2006, pp. 606 414–606 414.
- [9] C. A. Metzler, A. Maleki, and R. G. Baraniuk, "From denoising to compressed sensing," arXiv preprint arXiv:1406.4175, 2014.

Contact Information

Emails:

- Zhipeng Xue: xuezhp@shanghaitech.edu.cn
- Junjie Ma: hemajunjie@gmail.com
- Xiaojun Yuan: yuanxj@shanghaitech.edu.cn

