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1. Compressed Sensing

In compressed sensing (CS), we aim to learn a sparse vector x ∈
RN from the measurement:

y = Ax + w, (1)
where
�N > M ,
�A ∈ RM×N is a measurement matrix that mixes the sparse
vector,

�w is an additive Gaussian noise.
Many algorithms proposed for CS recovery including greedy algo-
rithms and convex based algorithms. However, most of the algo-
rithms converge slowly or have high complexity.

2. Approximate Message Passing (AMP)

AMP [1] is based on message passing. It’s an efficient iterative
algorithm with high converge rate and low complexity.
Algorithm 1 AMP algorithm

1: inputs:
A,y,x̂0 = 0, z0 = y

2: for t = 0, 1, 2, 3, . . . , k − 1 do
3: σ̂2

t = ‖zt‖2

M

4: rt = xt + ATzt
5: x̂t+1 = ηt(rt, σ̂t)
6: zt+1 = y −Ax̂t+1 + ztdiv{Dt(rt)}/M
7: end for
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The messages passing in a factor graph

� Intuitively, We can construct a factor graph of x. By
approximating messages in the factor graph under large N and
dense A, AMP can be derived.

�ztdiv{Dt(rt)}/M is the onsager item. It’s important to ensure
that rt is Gaussian distributed.

�When A is a i.i.d. Gaussian random matrix, a state evolution
(SE) characterizes the MSE of AMP [2].

�The performance of AMP can’t be guaranteed for
some matrixes, such as partial DCT matrix.

3. Motivation

We want to design a CS recovery algorithm with the
following characters:

�The explicit input signal prior is not needed.
� It can handle a variety of different types of random sensing
matrixes.

4. Orthogonal AMP (OAMP)

OAMP [3] works under various matrixes, such as i.i.d. random
Gaussian matrix, random orthogonal matrix, etc.
Algorithm 2 OAMP algorithm

1: inputs:
A,y, σ2, x̂0 = 0, z0 = y

2: for t = 0, 1, 2, 3 . . . , k do
3: v̂t = ‖zt‖2−Mσ2

tr(ATA)
4: rt = x̂t + Wtzt
5: σ̂2

t = Φ(v̂2
t )

6: x̂t+1 = Dt(rt, σ̂t)
7: zt+1 = y −Ax̂t+1
8: end for

�The ideal of OAMP comes form Turbo principle [4]. Turbo
principle is a kind of message passing principle.

�Extrinsic informations pass between two decoders like the
messages passing through the factor graph.

� In OAMP the onsager item vanished, and a divergence free
(divergence equals to 0) constraint is imposed on the nonlinear
function ηt(rt).

5. A Key Observation

Similar to AMP, in each iteration of OAMP, rt = x̂t + Wtzt can
be modeled as a white Gaussian noise additive signal:

rt = x0 + τte, (2)
where e ∼ N (0, I).
The following figures show the distribution of the Gaussian noise
part of rt

(a) Iteration 5 (b) Iteration 10 (c) Iteration 15 (d) Iteration 20
QQplots of r at various iterations of BM3D-OAMP

(a) Iteration 5 (b) Iteration 10 (c) Iteration 15 (d) Iteration 20
QQplots of r at various iterations of LET-OAMP

6. State Evolution of OAMP

We use the SE below to characterize OAMP
τ 2
t = Φ(v2

t ),

v2
t+1 = 1

N
E
{
‖Dt (x0 + τte)− x0‖2} , (3)

where the expectation is taken over e ∼ N (0, I), and v0 =
‖x0‖2/N . For partial orthogonal sensing matrix,

Φ(v2
t ) = N −M

M
v2
t + σ2. (4)

7. Denoising-based OAMP (D-OAMP)

D-OAMP is based on OAMP. We construct a divergence free de-
noiser from any chosen denoiser D̂(r):

D(r) = C
(
D̂(r)− 1

N
div

{
D̂(r)

}
r
)
. (5)

div
{
D̂(r)

}
is the divergence of D̂(r). It’s clear the divergence of

(5) is zero.
Based on the model (2), the tuning of parameter C is based on
stein’s unbiased risk estimate (SURE) [5], we choose C by mini-
mizing the SURE:

M̂SE = 1
N
‖D(r)− r‖2 + 2τ 2

N
div{D(r)} − τ 2

= 1
N
‖D(r)− r‖2 − τ 2

= 1
N
‖C

(
D̂(r)− div{D̂(r)}r

)
− r‖2 − τ 2,

(6)

where the second equality is due to the fact thatD(r) is divergence
free. The optimal C that minimizes (6) (which is a quadratic
function of C) is given by

C? =
rT

(
D̂(r)− div{D̂(r)}r

)
‖D̂(r)− div{D̂(r)}r‖2

. (7)

8. Denoisers for D-OAMP

To apply D-OAMP in image applications, we exploit the rich lit-
erature on image denoising.

�SURE-LET denoiser
Choosing denoiser D̂(r) as a SURE-LET denoiser [6]. A SURE
LET denoiser is a linear combination of multiple elementary
denoisers. Thus, the constructed divergence free denoiser has
the following form:

D(r) =
K∑
k=1

Ck

(
D̂k(r)− 1

N
div{D̂k(r)}r

)
. (8)

Denote C? ≡ [C?
1 , C

?
2 , . . . , C

?
K]T where {C?

k} is the optimal
value of {Ck} that minimize SURE. Let
Gk ≡ D̂k(r)− div{D̂k(r)}r, and define Mi,j ≡ GT

i Gj,
b ≡ [GT

1 r,G
T
2 r, . . . ,G

T
Kr]T . we obtain the following optimal

combining coefficients:
C? = M−1b. (9)

In the numerical results, we choose D̂(r) as the the piecewise
linear kernel in [7] and denote the algorithm as LET-OAMP.

�BM3D denoiser
We can choose D̂(r) as a BM3D denoiser [8]. The divergence of
BM3D denoiser has no explicit expression, we can use Monte
Carlo method [9] to compute the divergence. Let e ∼ N (0, I)
be an i.i.d. random Gaussian vector. The divergence of D(r)
can be estimated as:

div
{
D(rt)

}
≈ Ee

eT
D(rt + δe)−D(rt)

δ

 , (10)

where δ is a small constant. The expectation in (10) can be
approximated by sample average. It is observed in [9] that one
sample is good enough for high-dimensional problems.

9. Sparse Signal Recovery

We choose LET-OAMP to recover sparse signals. The performance
charactered by normalized mean square error (NMSE) is shown in
the following figures (noise level: 50dB, sparsity rate: 0.2, mea-
surement rate: 0.5).

Gaussian random sensing matrix.

Partial DCT random sensing matrix

10. Natural Image Reconstruction

For natural image reconstruction, we adopt BM3D denoiser to
D-OAMP (BM3D-OAMP). Under partial DCT random sensing
matrix, the constructed images using BM3D-OAMP are shown in
the following figures.

Original Barbara.

(a) BM3D-AMP, PSNR: 23.5dB. (b) BM3D-OAMP, PSNR: 27.1dB.
Reconstruction Barbara using D-AMP and D-OAMP, the measurement rate is
0.05.

When measurement rate is very low (up to 0.05), BM3D-OAMP
can also reconstruct Barbara with high PSNR (27.1dB).

11. More Numerical Results

More detailed numerical results about natural image reconstruction using D-OAMP and D-AMP are listed below.
Image name Lena Boat Barbara Fingerprint
Measurement rate 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70%
EM-GM-GAMP 26.89 29.50 32.38 24.70 27.78 30.95 24.47 27.69 32.14 22.51 26.04 29.58
LET-AMP 22.53 30.78 33.74 21.51 29.00 32.42 19.69 28.92 32.46 17.48 27.25 31.11
LET-OAMP 27.72 31.12 34.80 25.70 29.44 33.54 25.49 29.36 33.70 23.60 27.82 32.48
BM3D-AMP 34.72 38.20 38.98 34.09 34.70 37.92 35.15 38.24 41.39 28.97 33.18 37.00
BM3D-OAMP 35.50 38.26 42.36 34.59 37.60 41.28 36.51 39.83 43.35 31.01 35.24 39.79

PSNR of reconstructed images under orthogonal random sensing matrix

Image name Lena Boat Barbara Fingerprint
Measurement rate 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70%
LET-AMP 12.68 12.47 12.29 12.48 12.7 12.75 12.49 12.45 12.83 12.74 12.41 13.57
LET-OAMP 4.60 3.97 2.72 4.39 3.86 3.33 4.32 3.72 3.45 7.95 5.1 4.92

Reconstruction time of images under orthogonal random sensing matrix

D-OAMP outperform D-AMP in both reconstruction PSNR and time.

12. Conclusions

�The recovery quality of D-OAMP is the best of all existing CS
recovery algorithms under partial orthogonal sensing matrixes.

�D-OAMP converges faster comparing to other existing
algorithms under i.i.d. Gaussian and partial orthogonal matrix.

�By adopting different denoisers, D-OAMP can be used in many
scenarios, such as image reconstruction and matrix recovery.
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