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Motivation - Online Human Activity Recognition

Online Human Activity Recognition

I Massive Streams of daily generated data
I Constantly alternating activities

Goals and Contribution

Feature Selection for HAR
4 Reduce raw signals into discriminative features
4 Accurate interpretation of Human Activities

å Software Framework
for Online Feature Selection on Mobile Devices

å Explore online aspects of popular Feature Selection Algorithms
å Analyze FSA performance with respect to variation of activities

Proposed Online Feature Selection Architecture

Online Feature Selection library

å Extension of FORTH-TRACE library [1] in Android Devices
å Dynamic data processing and storage
⇒ Database integration to load and store data

å Dynamic data gathering
⇒ Temporal windows of size W to simulate online scenario

å Online Feature Extraction and Feature Selection

Experimental Setup

Dynamic Data Gathering
å FORTH-TRACE Dataset [1]

(duration of activities: 18 min)
å Temporal windows W ∈ {2,3,4,5} (min)
å Generating P ∈ {9,6,5,4} partitions

FORTH-TRACE DATASET

https://github.com/spl-icsforth/FORTH_
TRACE_DATASET

Segmentation
I Sliding windows of length w = 2s

Feature Extraction
I Statistical Features [6]

Feature Selection
I Unsupervised: Feature similarity for

redundancy reduction - FSSA (2002) [3]
I Ranker: Relief-F (1997) [4]
I Graph-Based: Graph Clustering

with Node Centrality - GCNC (2015) [5]

Post-Processing Evaluation Metrics

å Normalized Representation Entropy (H̄r ) [3]
I H̄r ∈ [0,1]
I Measures the amount of redundancy in feature set

å SVM classification accuracy (CA) [2]
I Split feature set into Train (70%) and Test (30%) sets
I Gaussian-Kernel SVM classifier

Online Performance of Library

å Execution time per component
å Energy requirements of

Android device

Experimental Results

Classification Accuracy w.r.t. the data chunk size W (mean values from all sensor locations)

Figure : W = 2 min
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Figure : W = 3 min
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Figure : W = 4 min
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Representation Entropy w.r.t. the data chunk size W (mean values from all sensor locations)

Figure : W = 2 min
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Figure : W = 3 min
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Figure : W = 4 min
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Inconsistent FSA performance over different temporal windows W
due to variation of activity labels within different partitions P

Online HAR applications involve short data chunks!

Impact of activity labels to the Classification Accuracy

Classification Accuracy and percentage (%) of activity labels across different partitions for W = 2 min

Left Wrist
Partition Index 2 4 5 8
GCNC 0.66 0.81 0.84 0.68
Relief-F 0.78 0.97 0.97 0.88
FSSA 0.70 0.58 0.71 0.62

Right Thigh
Partition Index 2 4 5 8
GCNC 0.69 0.96 0.80 0.67
Relief-F 0.72 0.96 0.95 0.95
FSSA 0.62 0.84 0.74 0.54

Activity 2 4 5 8
stand 18.64 3.39 16.1 16.1
sit 41.53 - - -
sit & talk 26.27 - - -
walk - 94.92 - -
walk & talk - - 81.36 28.81
climb - - - -
climb & talk - - - 50.85
postural transitions 13.56 1.69 2.54 4.23

Distribution of Activity Labels and CA
4 Single primary activity⇒ optimal CA

7 More activities⇒ less accurate predictions

Run-time aspects of Feature Selection library

Execution time(s) of the library components per W

W 2 3 4 5
Acquisition 1.2 1.36 1.73 1.7
Segmentation 0.73 0.95 1.14 1.16
Feature Extraction 46.62 84.28 116.71 146.23
FS: FSSA 49.57 69.81 85.74 105.49
FS: Relief-F 4.3 7.36 9.75 11.71
FS: GCNC 21.52 21.74 23.06 28.25

I Most time consuming module: Feature Extraction
I FSA execution:
7 Relief-F (supervised): fast ⇒ not suitable for online

realizations
4 GCNC (graph-based): adequate time and

performance for integration with online architectures

Energy consumption of online library

Energy Requirement: ∼ 20.3 Joule

Outperforms:
I Adaptive Accelerometer Activity

Recognition (A3R) algorithm [7]
⇒ 100 Joule

I Shimmer3 Gesture Recognition
application [8]⇒ 29.2 Joule
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