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Context and motivation
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Popular news stories

Infectious diseases
Buying patterns

Propagate in cascades 
over social networks

Network topologies:

Unobservable, dynamic, sparse

Topology inference vital:

Viral advertising, healthcare policy

Goal: track unobservable time-varying network topology from cascade traces

Contagions

 B. Baingana, G. Mateos, and G. B. Giannakis, ``Dynamic structural equation models for social network 
topology inference,'' IEEE J. of Selected Topics in Signal Processing, vol. 8, no. 4, pp. 563-575, Aug. 2014.



Information cascades over dynamic networks
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q  Example: spread of 1 cascade over 3 time intervals

q  Measurable/observable quantities:

Ø   Infection time of node by cascade (e.g., first appearance of news item on blog)

Ø   Node susceptibility to infection (e.g., politicians blog politics )

q  Cascade infection times depend on:

Ø   Causal interactions among nodes (topological/endogenous influences)

Ø   Susceptibility to infection (non-topological/exogenous influences)



Contextual framework

4 

q  Static structural equation models (SEM) for network inference

Ø   Undirected topology inference [Gardner-Faith’05][Friedman et al’07]

Ø   Sparse SEMs for directed genetic networks [Cai-Bazerque-GG’13]

J. Pearl, Causality: Models, Reasoning, and Inference, 2nd Ed., Cambridge Univ. Press, 2009

q  Causal inference from time-varying processes

Ø  Graphical Granger  causality and VAR models [Shojaie-Michailidis’10]

Ø  MLE-based dynamic network inference [Rodriguez-Leskovec’13]

q  Contributions

Ø  Dynamic SEMs for tracking dynamic and sparse networks

Ø  Accounting for external influences – identifiability [Bazerque-Baingana-GG’13] 

Ø  First-order topology inference algorithms



Model and problem statement
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q  Data: Infection time of node i by contagion c during interval t
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i = 1, . . . , N, c = 1, . . . , C, t = 1, . . . , TØ    

q   Problem statement:

{At} {Bt}Ø   Goal: Track network topologies            and external influences   

XØ   Given: Cascade data             and   {Yt}

q  Dynamic matrix SEM  with                          and  
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Yt = AtYt +BtX+Et, t = 1, . . . , T



How do network topologies evolve?
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q   Slowly-varying network topologies

Ø  Examples: Facebook friendships, web page links

Ø  Entries of        do not suddenly changeAt

q   Switch between discrete network states [This talk]

Ø                            where At = A�(t) �(t) 2 {1, . . . , S}

Ø   Example: Twitter influence network during major political/sports events

Ø   Task: identify states                           and switching sequence  {As,Bs}Ss=1 {�(t)}Tt=1

Facebook friends

Liberal/conservative retweet network

Major debate Ordinary times



Tracking switched network topologies
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q         and        switch between S states                           with dynamic SEMAt Bt {As,Bs}Ss=1

Yt = A�(t)Yt +B�(t)X+Et �(t) 2 {1, . . . , S}, t = 1, . . . , T

q   Model assumptions:

Ø   (as1) All cascades are generated by some pair                         (S known)  {As,Bs}Ss=1

Ø   (as2)                    are sparse and                   are diagonal {Bs}Ss=1{As}Ss=1

Ø   (as3)  No two states can be jointly active during a given interval

kYt �AsYt �BsXkF = kYt �As0Yt �Bs0XkF =) s = s0



Sparsity-promoting estimator
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q   Constrained sparsity-promoting least-squares (LS) estimator

Ø                    if                    otherwise               , and  �ts = 1 �(t) = s �ts = 0 kAsk1 :=
X

ij

|asij |

arg min
{As,Bs}S

s=1

{{�ts}S
s=1}

T
t=1

(1/2)
TX

t=1

SX

s=1

�tskYt �AsYt �BsXk2F +
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�ts = 1 8t,�ts 2 {0, 1} 8s, t

asii = 0, bsij = 0, 8s, i 6= j

promotes edge sparsity

q   Caveats

Ø  NP-hard mixed integer program

Ø  Batch estimator unsuitable for streaming cascade data



Sequential state estimation
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q   Setting:             acquired sequentially{Yt}

Ø  Idea: Adopt two-step sequential estimation strategy 

q   S2. With                            known, solve decoupled problem per t and s{{�̂⌧s}Ss=1}t⌧=1

arg min
As,Bs

(1/2)
tX

⌧=1

�̂⌧skY⌧ �AsY⌧ �BsXk2F + �skAsk1

s.t. asii = 0, bsij = 0, 8i 6= j convex

Ø  Set                   if                   else �̂ts = 1 �̂(t) = s �̂ts = 0

q   S1. Estimate active state           using most recent�̂(t) {Âs, B̂s}Ss=1

�̂(t) = arg min
s2{1,...,S}

kYt � ÂsYt � B̂sXkF



Solving S2: First order algorithm
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q  Iterative shrinkage-thresholding algorithm (ISTA) [Parikh-Boyd’13]

Ø  Ideal for convex + non-smooth cost

q   Let Vs := [As Bs] ; f(Vs) := (1/2)
tX

⌧=1

�̂⌧skY⌧ �AsY⌧ �BsXk2F

Vs[k] = arg min
V

(Lf/2)kV � (Vs[k � 1]� (1/Lf )rf(Vs[k � 1]))k2F + �skAk1

gradient descent

solvable by soft-thresholding operator [cf. Lasso]

q   Attractive features
Ø  Provably convergent, closed-form updates

Ø  Recursive hence fixed computational and memory cost per t 

Ø  Scales to large datasets (no matrix inversions)



Simulation setup
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q  S = 4  Kronecker graphs with adj. matrices                                   [Leskovec et al’10]  {As 2 R64⇥64}4s=1

q   Synthetic cascade generation

Ø  N = 64 nodes, C = 80 cascades, and T = 1,000 intervals

�(t) S = {1, 2, 3, 4} [Et]ij ⇠ N (0, 0.01)Ø           sampled uniformly from                            and  

Yt = (IN �A�(t))�1(B�(t)X+Et)Ø    

q                               and[X]ij ⇠ U [0, 3] {Bs = B}4s=1

B = Diag(b11, . . . , bNN ), bii ⇠ U [0, 1]Ø    

q   Initialization by batch estimator



Simulation results
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actual topologies estimated topologies

actual state sequence

estimated state sequence

�s = 0.95 for all s



Tests on real information cascades
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q   Web mentions of popular memes tracked from Mar. ‘11 to Feb. ‘12

Ø  Examples: Fukushima, Kim Jong-un, Osama, Steve Jobs, Arab spring

Ø  N = 1,131 websites, C = 625 cascades, T = 180 intervals (approx. 2 days per t) 

q   Resulting network states with 10 most “central” websites labeled

s = 1 s = 2 s = 3



Conclusions
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q   Switched dynamic SEM for modeling node infection times due to cascades

Ø  Topological influences and external sources of information diffusion

Ø  Accounts for edge sparsity typical of social networks

q   Proximal gradient algorithm for tracking switching sequence

Ø  Corroborating tests with simulated data

Ø  Real cascades of online social media revealed interesting patterns

q  Ongoing and future research

Ø  Identifiability results for switched dynamic SEMs

Ø  Large-scale implementations using MapReduce/GraphLab platforms

Ø  Modeling nonlinearities via kernel methods

Thank You!


