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• Sparse linear regression 

– Unknown sparse signal                           , 

– Vector of observations 

– Full rank coefficient matrix   , 

– Observation noise vector  

• Sparse linear regression as an optimization task

• A non-convex NP-hard program

• Approximations: Convex relaxation vs greedy methods

Introduction
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• Replacing    -norm constraint with a    -norm optimization

• Alternative: Least Absolute Shrinkage and Selection 

Operator (LASSO)

• having near orthonormal columns guarantees perfect 

reconstruction with high probability [Candes et al., 2006]

– Sampling complexity 

• Often computationally challenging in practice

Convex Relaxation Methods
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• Successively identifying columns of   which correspond 

to non-zero components of 

• Popular method: Orthogonal Matching Pursuit (OMP) 

• Maximum correlation with a residual vector 

• having near orthonormal columns guarantees perfect 

reconstruction with high probability [Tropp et al., 2007]

– Sampling complexity 

Greedy Methods
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• Dates back to 1980, but recent in compressed sensing

• Minimizing approximation error

• Outperforms LASSO and OMP for an     with correlated 

columns [Soussen et al., 2013]

• More complex than OMP and more challenging to 

analyze

Orthogonal Least-Squares (OLS)
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1. Sufficient conditions on recovery properties of OLS from 

random linear measurements

2. Improved OLS-based algorithms

Contributions
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Theorem

For                         or                         , OLS can recover     in                                          

iterations from                              noiseless measurements 

with probability of success exceeding          ,                .                             

Proof ingredients

• Induction proof framework 

• Spherically symmetric columns

Sampling Complexity of OLS
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• A different OLS strategy

– Selecting    indices in each iteration

– An overdetermined linear system with at least    variable

• Reducing complexity of OLS

– : Selected column in current iteration

– : Projection onto span of previously selected columns

– A recursion for 

– Reduced cost selection criterion

Toward Improved OLS
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I. Initialize                                                      

II. Repeat for

1.

2. Update set of selected indices

3. Update the projection matrix        using recently selected indices

III.  Find the recovered signal

Generalized OLS Algorithm

8 / 16



Sparse Linear Regression via Generalized Orthogonal Least-Squares Hashemi and Vikalo

• Cost per iteration

1.

total cost 

3.

total cost

• Worst case complexity                  assuming

• In practice terminates much sooner than reaching the 

predetermined maximum number of iterations

Computational Complexity
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• Accelerated selection criterion

where

• Per iteration cost             vs  

Reducing the Cost of Iterations
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• Setting

– Number of noiseless measurements 

– Dimension of unknown vector

– Coefficient matrix 

– Varying number and value of nonzero entries

• Benchmarking methods

– OMP

– OLS

– LASSO

– - norm minimization

– Generalized OLS with 

Results
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Normally Distributed Sparse Vector

Results

(a) Exact recovery rate (b) Running time
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Results

(a) Exact recovery rate (b) Running time

-Valued Sparse Vector
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-Valued Sparse Vector

Results

(a) Exact recovery rate (b) Running time
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• Sampling requirements of OLS for perfect recovery

• Improved OLS-based schemes

• Performance gain while being computationally more

efficient than LASSO and    -norm minimization

• Exploring the case of correlated matrices

Conclusion
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Thank you for your attention! 
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Appendix Slides
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• the sub-matrix of     constructed by selecting of   its 

columns 

• pseudo-inverse of

• the projection matrix onto the span of the 

columns of      , and 

Toward Improved OLS
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(a)

(b) Idempotent property

Toward Improved OLS
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• Equivalently

• Following the recursive relation and idempotent property

Selecting new indices
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Accelerated OLS
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AOLS vs OLS

Comparison on required number of operations
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Number of noiseless measurements required for sparse reconstruction 

with probability of success at least 95% when m = 256. The regression 

line is n = 0.7558 k log m + 19.4798.

Sampling requirements of OLS


