

# A SEMI-SUPERVISED METHOD FOR MULTI-SUBJECT FMRI FUNCTIONAL ALIGNMENT

Javier S. Turek, Theodore L. Willke Parallel Computing Lab, Intel Labs

Cameron Chen, Peter J. Ramadge Department of Electrical Engineering, Princeton



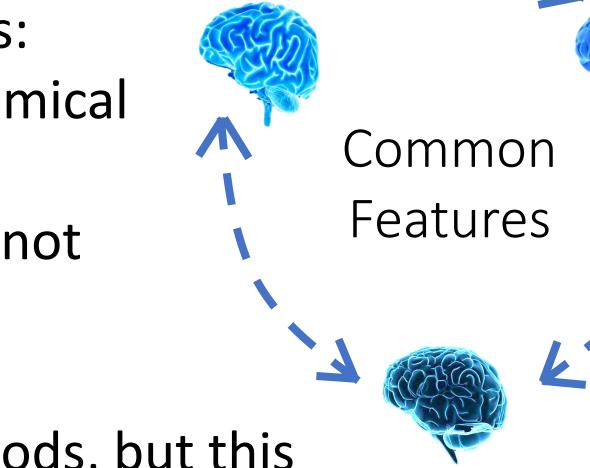
### Multi-subject fMRI Functional Alignment

fMRI acquisition is constrained:

- Limited number of samples per subject.
- Reduced statistical power (more features than samples). Use multi-subject data to increase statistical power.

Need to align between subjects:

- Subjects have distinct anatomical and functional structures.
- Anatomical alignment does not ensure functional brain topographies alignment.

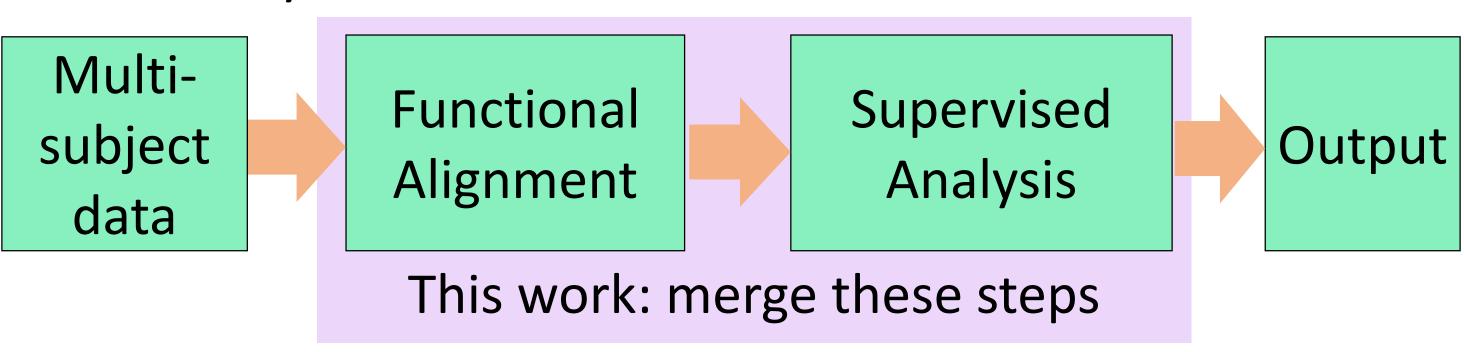


Use functional alignment methods, but this requires a task with "same thoughts" across subjects.

### Multi-subject Experiment Workflow

Typically, experiments consist of a supervised analysis that uses functionally aligned data as input. We merge the alignment and analysis steps to address these challenges:

- Functional alignment requires many samples.
- Alignment does not capture the supervised information.
- It is costly to label data.



### Semi-Supervised Method

$$\min_{\psi,\theta} \left(1-\alpha\right) \mathcal{L}_{Align}\left(\psi\right) + \alpha \mathcal{L}_{Sup}\left(\theta;\psi\right) + R\left(\theta\right),$$
 Alignment Regularization 
$$\alpha \in [0,1]$$
 Supervised analysis

## Alignment: Shared Response Model (SRM)[1]

Map each subject v-dimensional t-measurements to a shared k-dimensional subspace (k << v).

$$\mathcal{L}_{SRM}\left(\left\{\mathbf{W}_{i}\right\}_{i},\mathbf{S};\left\{\mathbf{X}_{i}\right\}_{i}\right)=\frac{1}{2t}\sum_{i}\|\mathbf{X}_{i}-\mathbf{W}_{i}\mathbf{S}\|_{F}^{2}$$

 $\mathbf{X}_i$ : Subject i data  $\mathbf{S}$ : Shared response  $\mathbf{W}_i$ : Subject i orthogonal mapping, i.e.,  $\mathbf{W}_i^T\mathbf{W}_i = \mathbf{I}_k$ 

# Supervised Analysis: Multinomial Logistic Regression (MLR)

Multi-class classification of C classes on the shared response of q-labeled measurements of each subject.

$$\mathcal{L}_{MLR}\left(\mathbf{\Theta}, \mathbf{b}; \left\{\mathbf{Z}_{i}, \mathbf{y}_{i}, \mathbf{W}_{i}\right\}_{i}\right) = \frac{1}{\gamma} \sum_{i} \mathcal{L}_{i}$$
 $\mathcal{L}_{i} = -\frac{1}{2q} \sum_{j} \log \left(\operatorname{softmax}_{\left(\mathbf{y}_{i}\right)_{j}}\left(\mathbf{\Theta}^{T}(\mathbf{W}_{i}^{T}\left(\mathbf{Z}_{i}\right)_{j}) + \mathbf{b}\right)\right)$ 

 $\mathbf{Z}_i, \mathbf{y}_i$ : Subject i supervised data and labels

Θ, b : Classifier parameters

### **Block Coordinate-Descent Approach**

for iteration = 1,2,3,...

- 1. Update shared response:  $\mathbf{S} = \frac{1}{N} \sum_i \mathbf{W}_i^T \mathbf{X}_i$
- 2. Update subject mappings (CG on Stiefel manifold):  $\mathbf{W}_{i} \leftarrow \mathbf{W}_{i} + \delta \left[ \nabla_{\mathbf{W}_{i}} \mathcal{L}_{SRM} \left( \mathbf{W}_{i}, \mathbf{S} \right) + \nabla_{\mathbf{W}_{i}} \mathcal{L}_{MLR} \left( \mathbf{\Theta}, \mathbf{b}; \mathbf{W}_{i} \right) \right]$
- 3. Update MLR parameters (common MLR algorithms)

### **Experimental Results**

MLR: MLR without functional alignment.

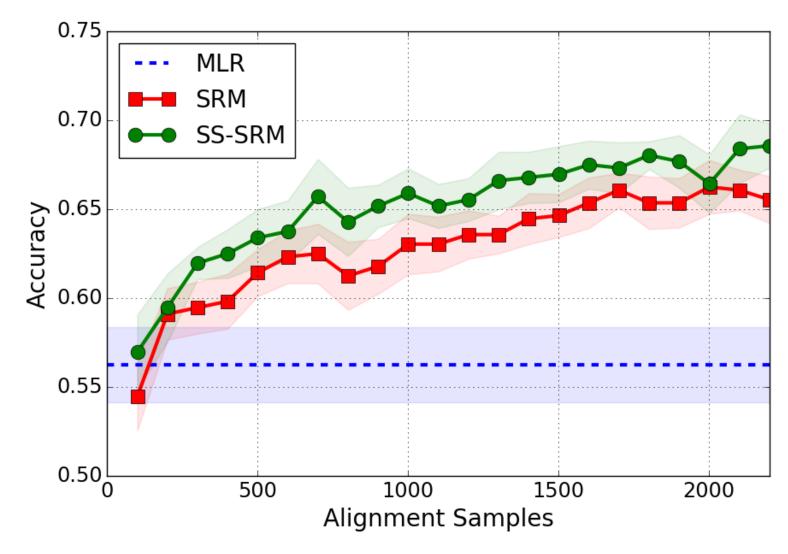
SRM: SRM with independent MLR.

SS-SRM: Our work.

 $\gamma > 0$ 

| Dataset            | Experiment                     | Subj / t / q / C                    | MLR            | SRM | SS-SRM              |
|--------------------|--------------------------------|-------------------------------------|----------------|-----|---------------------|
| raider<br>sherlock | Image category<br>Scene recall | 10/2203/ 56 / 7<br>17/1976/24-44/47 | 56.25% $4.28%$ |     | $68.57\% \\ 6.12\%$ |

### Average accuracy (raider, k=50)



Potential reduction of input data:
Same accuracy with half the alignment samples

Find our code at: http://brainiak.org

#### References

[1] P.-H. Chen, et. al., "A reduced-dimension fMRI shared response model," in NIPS 28<sup>th</sup>, 2015.