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• The signal model:

Goal: An efficient algorithm for overcomplete

dictionary learning with 𝑙𝑝-norm(0 < 𝑝 < 1)

as sparsity constraint to achieve sparse

representation from a set of known signals in

the synthesis model.
• 𝑝 = 0.9, no noise:

 The combination of hierarchically

alternating update strategy and weighted

𝑙1 -norm method is effective in the

synthesis model;

 The weighted 𝑙1-norm is valid to reduce

sparseness with lower p value;

 The proposed algorithm has good

robustness against noise.

 The proposed algorithm can be capable

with image denoising

 Future work: mathematically rigorous

convergence analysis
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• The problem is formed as:
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DICTIONARY LEARNING FOR SPARSE REPRESENTATION USING WEIGHTED 𝒍𝟏-NORM

The Synthesis Model

𝐲 = 𝐀𝐱 + 𝐧
n

m

Dictionary

=

𝐲
𝐱𝐀

min
𝐱

𝐱 𝑝 subject to 𝐲 − 𝐀𝐱 2 ≤ 𝜀,

Introduction

Algorithm

• To approach sparsest possible 𝐱, additional 
sparse constraint is introduced:    

• 0 < 𝑝 < 1 was chosen in the proposed
algorithm as to enhance sparseness of
solutions compared to 𝑙1-norm [1].

Dictionary Learning

• To learn the overcomplete dictionary 𝐀
from the signal sample itself,

• Result in better matching to the contents 
of the signals and representation of signals 
with fewer atoms of the dictionary [2].

Formulation Experiments

𝐀, 𝐗 = argmin
𝐗,𝐀

1

2
𝐘 − 𝐀𝐗 2 + λ 𝐗 𝑝

𝑝
,

• The concave 𝑙𝑝-norm is reformed as a 

convex weighted 𝑙1-norm: 

• A smoothed approximation for the absolute 

value is introduced: 𝑥 ≈
1

𝑐
log cosh 𝑐𝑥 ,

• The hierarchically alternating update

strategy [3] is employed:

𝑑𝑤 𝐱 𝑖𝑡𝑒𝑟 = 
𝑘=1

𝑛
| ሻ𝐱(𝑘 𝑖𝑡𝑒𝑟−1|𝑝−1| ሻ𝐱(𝑘 𝑖𝑡𝑒𝑟|,

𝐱𝑖: , 𝐚:𝑖 = arg min
𝐱𝑖:,𝐚:𝑖
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𝐚:𝑖𝐱𝑖: −

𝐲 − σ𝑘=1,𝑘≠𝑖
𝑛 𝐚:𝑘𝐱𝑘:

2
+ 𝜆𝑑𝑤 𝐱𝑖: .

Experiments

Performance of Algorithm

(a) (b)

(c) (d)

Experimental result of recovered dictionary after 500

iterations (c) and the ground true dictionary (d) are
present in 4 × 5-dimensional subspaces.

Experiment Setup

• Dimension of dictionary: 𝑚 = 20, 𝑛 = 50,

• Sample size of signals: 𝑁 = 1500.

Algorithm 1
Task: To find proper 𝐀 and 𝐗 to minimize 𝐀, 𝐗 =

argmin
𝐗,𝐀

1

2
𝐘 − 𝐀𝐗 2 + λ 𝐗 𝑝

𝑝

Initialization: input data set Y and proper λ and c
 Initialize matrices 𝐀 and 𝐗

Main iteration: increment iter by 1
 Sparse representation: calculate value of X entry 

by entry,

𝑥𝑖: l
iter =

𝐚:𝑖
𝑇𝐲𝑖−𝜆 𝑥𝑖: 𝑙

𝑖𝑡𝑒𝑟−1 𝑝−1
tanh 𝑐𝑥𝑖: 𝑙

𝑖𝑡𝑒𝑟

𝐚:𝑖
𝑇𝐚:𝑖

; 𝑙 =

1,… ,𝑁; 𝑖 = 1,… , 𝑛, set 𝑝 = 1 at the first iteration;
 Dictionary learning: update A column by column,
𝐚:𝑖

(𝑖𝑡𝑒𝑟ሻ ← 𝐲𝑖𝐱𝑖:
𝑇 𝐱𝑖:𝐱𝑖:

𝑇 −1; 𝑖 = 1,… , 𝑛, 
 Stopping rule: stop if both 𝐀 and 𝐗 have 

converged or iter reach preset max iteration. 
Output: 𝐀 and 𝐗

Comparison with varied p values

• 𝑝 = 0.9

Comparison in varied noise levels

• SNR = 20dB

Comparison with different algorithms

Algorithms

Experiments results

Recovery ratio of  𝐀 (%) Sparseness (10−2)
Time spent until 

convergence (sec)

10 dB 20 dB
noisele

ss
10 dB 20 dB

noisele
ss

10 dB 20 dB
noisele

ss

Proposed
Algorithm

99.5
± 1.2

98.0
± 1.8

99.2
± 1.0

81.5
± 0.2

84.7
± 0.2

85.5
± 0.4

19.5
± 1.9

15.6
± 2.2

15.4
± 2.3

K-SVD [4]
84.8
± 9.0

95.6
± 3.6

94.5
± 3.0

91.4
± 0.1

91.7
± 0.1

91.8
± 0.1

14.5
± 5.7

14.6
± 7.0

11.9
± 4.3

MOD [5]
85.4
± 6.2

91.0
± 3.0

91.7
± 3.3

91.4
± 0.1

91.6
± 0.1

91.7
± 0.1

9.8
± 2.0

9.5
± 3.8

10.0
± 4.9

FOCUSS-
CNDL [6]

84.6
± 3.8

90.0
± 2.4

90.2
± 3.0

88.0
± 0.5

90.5
± 0.3

90.9
± 0.3

29.9
± 3.8

24.8
± 7.3

27.8
± 4.7

Application in image denoising

• 𝑝 = 0.9, initial SNR = 22.10dB, after 20 

iterations, SNR = 27.59dB

Conclusion

Key Reference
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𝑙1-norm

𝑝 = 0.8

𝑝 = 0.9

𝑙1-norm

𝑝 = 0.8

𝑝 = 0.9
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