

DICTIONARY LEARNING FOR SPARSE REPRESENTATION USING WEIGHTED l_1 -NORM Haoli Zhao, Shuxue Ding, Yujie Li, Zhenni Li, Xiang Li and Benying Tan School of Computer Science and Engineering, The University of Aizu

Introduction

Goal: An efficient algorithm for overcomplete dictionary learning with l_p -norm(0)as sparsity constraint to achieve sparse representation from a set of known signals in the synthesis model.

The Synthesis Model

- To approach sparsest possible **x**, additional sparse constraint is introduced: min $\|\mathbf{x}\|_p$ subject to $\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2 \le \varepsilon$,
- 0 was chosen in the proposedalgorithm as to enhance sparseness of solutions compared to l_1 -norm [1].

Dictionary Learning

- To learn the overcomplete dictionary **A** from the signal sample itself,
- Result in better matching to the contents of the signals and representation of signals with fewer atoms of the dictionary [2].

- The problem is formed as: $(\mathbf{A}, \mathbf{X}) = \arg \min_{\mathbf{v}}$
- convex weighted l_1 -norm: $d_w(\mathbf{x}^{(iter)}) = \sum_{k=1}^{\infty}$
- The hierarchically alternating update strategy [3] is employed:

$$(\{\mathbf{x}_{i:}\}, \{\mathbf{a}_{:i}\}) = \arg\min_{\mathbf{x}_{i:}, \mathbf{a}_{:i}} \left(\frac{1}{2} \|\mathbf{a}_{:i}\mathbf{x}_{i:} - \sum_{k=1, k \neq i}^{n} \mathbf{a}_{:k}\mathbf{x}_{k:}\right) \|^{2} + \lambda d_{w}(\mathbf{x}_{i:}) \right).$$

<u>Algorithm</u>

Algorithm 1

 $\arg\min_{\mathbf{X}}\left(\frac{1}{2}\|\mathbf{Y} - \mathbf{A}\mathbf{X}\|^2 + \lambda\|\mathbf{X}\|_p^p\right)$

- **Initialization**: input data set **Y** and proper λ and c • Initialize matrices A and X
- Main iteration: increment iter by 1
- Sparse representation: calculate value of X entry by entry,

 $x_{i:}(l)^{(\text{iter})} = \frac{\mathbf{a}_{:i}^{T} \mathbf{y}_{i} - \lambda |x_{i:}(l)^{(iter-1)}|^{p-1} \tanh(cx_{i:}(l)^{(iter)})}{\mathbf{a}_{:i}^{T} \mathbf{a}_{:i}}; l =$ 1, ..., N; i = 1, ..., n, set p = 1 at the first iteration; • Dictionary learning: update A column by column, $\mathbf{a}_{i}^{(iter)} \leftarrow \widetilde{\mathbf{y}}_i \mathbf{x}_{i}^T (\mathbf{x}_i \mathbf{x}_i^T)^{-1}; i = 1, \dots, n,$ • Stopping rule: stop if both **A** and **X** have converged or iter reach preset max iteration.

- Output: A and X

Formulation

$$\lim_{\mathbf{A}} \left(\frac{1}{2} \| \mathbf{Y} - \mathbf{A} \mathbf{X} \|^2 + \lambda \| \mathbf{X} \|_p^p \right),$$

The concave l_p -norm is reformed as a

$$\sum_{k=1}^{n} |\mathbf{x}(k)^{iter-1}|^{p-1} |\mathbf{x}(k)^{iter}|,$$

• A smoothed approximation for the absolute value is introduced: $|x| \approx \frac{1}{c} \log \cosh(cx)$,

Task: To find proper A and X to minimize(A, X) =

Experiments

Experiment Setup

- Dimension of dictionary: m = 20, n = 50,
- Sample size of signals: N = 1500.

Performance of Algorithm

• p = 0.9, no noise:

Experimental result of recovered dictionary after 500 iterations (c) and the ground true dictionary (d) are present in 4×5 -dimensional subspaces.

Comparison in varied noise levels

• p = 0.9

Comparison with different algorithms

	Algorithms	Experiments results									
		Recovery ratio of $ {f A} (\%) $			Sparseness (10^{-2})			Time spent until convergence (sec)			
		10 dB	20 dB	noisele ss	10 dB	20 dB	noisele ss	10 dB	20 dB	noisele ss	
	Proposed Algorithm	99.5 ± 1.2	98.0 ± 1.8	99.2 ± 1.0	81.5 ± 0.2	84.7 ± 0.2	85.5 ± 0.4	19.5 ± 1.9	15.6 ± 2.2	15.4 ± 2.3	
	K-SVD [4]	84.8 ± 9.0	95.6 ± 3.6	94.5 ± 3.0	91.4 ± 0.1	91.7 ± 0.1	91.8 ± 0.1	14.5 ± 5.7	14.6 ± 7.0	11.9 ± 4.3	
	MOD [5]	85.4 ± 6.2	91.0 ± 3.0	91.7 ± 3.3	91.4 ± 0.1	91.6 ± 0.1	91.7 ± 0.1	9.8 ± 2.0	9.5 ± 3.8	10.0 ± 4.9	
	FOCUSS- CNDL [6]	84.6 ± 3.8	90.0 ± 2.4	90.2 ± 3.0	88.0 ± 0.5	90.5 ± 0.3	90.9 ± 0.3	29.9 ± 3.8	24.8 ± 7.3	27.8 ± 4.7	

Application in image denoising • p = 0.9, initial SNR = 22.10dB, after 20 iterations, SNR = 27.59 dB

The	
alterr)
l_1 -n	(
synth	
The	
spars	e
The	
robus	5
The]
with	1
Futur	•
conve	2

[4] Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation. IEEE *Transactions on Signal Processing*. 54(11), 4311–4322.

[5] Engan, K., Aase, S. O., & Husoy, J. H. (1999). Method of optimal directions for frame design. 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. 5, 2443-2446

[6] Kreutz-Delgado, K., Murray, J. F., Rao, B. D., Engan, K., Lee, T., & Sejnowski, T. J. (2003). Dictionary Learning Algorithms for Sparse Representation. Neural Computation, 15(2), 349-396

Haoli Zhao, Mail: D8172101@u-aizu.ac.jp Professor Shuxue Ding, Mail: <u>Sding@u-aizu.ac.jp</u>

Conclusion

hierarchically combination OŤ nating update strategy and weighted orm method is effective in the nesis model;

weighted l_1 -norm is valid to reduce eness with lower *p* value;

proposed algorithm has good stness against noise.

proposed algorithm can be capable image denoising

work: mathematically rigorous ergence analysis

Key Reference

[1] Li, Z., Ding, S., Li, Y., & Chen, W. (2015). Dictionary learning with $\ell 1/2$ regularizer for sparsity based on proximal operator. 2015 IEEE 7th International Conference on Awareness Science and Technology.

[2] Elad, M. & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries, IEEE Transactions on *Image Processing*, 15(12), 3736–3745.

[3] Gillis, N., & Glineur, F. (2012). Accelerated Multiplicative Updates and Hierarchical ALS Algorithms for Nonnegative Matrix Factorization. *Neural Computation*, 24(4), 1085-1105.

Contact