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Problem Description (1): Pictorial Sketch

Figure: Sparse Off-grid DoA.
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Problem Description (2)

v

Off-grid DoA estimation problem can be formulated as a
sparse model with a structured perturbation

Can be solved by basis pursuit denoising (BPDN) solver w/
linear constraints

» pros: easy to implement, e.g. use CVX
» cons: large computational complexity

v

v

Aim to solve this problem efficiently
Contributions of this work

» Propsed an efficient algorithm
» Analyzed convergence rate

v
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Sparse Off-grid DoA Model
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Sparse Off-grid DoA Model (1)

» True DoAs not on the grid

» Structured perturbation E = BT is first-order term in Taylor
expansion

y=(A(¢)+E)s+n=(A(¢)+BlNs+n (1)

» Sensing matrix A(¢) € CM*N is known and parametrized
by ¢ = [¢1,..., dn]

» Mismatch matrix B € CM*N is known

» Diagonal matrix I' = diag(3) with off-grid 8 = [31,. .., 6n]"
is unknown, 0 < |5;| < rand r = W_zi” is the half size of
the grid interval

» K-sparse signal of interest s € RNV*!

» Letp = B®s, where ©: Hadamard product. G = [A(¢), B],
x=[sT,p’]” € R2Nx1 where s, p share the same sparsity.

y = (A(¢)s +Bp) + n = Gx + n, (2)



Sparse Off-grid DoA Model (2)

» Solve (2) by BPDN w/ linear inequalities constraints

.1
arg min 7 [ly — Gx|[3 + nl|x]lz.1-
xekX
st. x={x=[s",p"]":s>0 —-rs<p<rs}.
» Unconstrained problem

arg min F(x) = {f(x) + h(x) + tx(x)}, (4)

XcR2N X1

f(x) := 3lly — Gx[[3, h(X) := 71l[X[[21 = 1 g.cq [Xg2.
tx(X): indicator function.

» Smooth one of nonsmooth functions



Sparse Off-grid DoA Model (3)

Examples of Related Work

» Off-grid DoA estimation algorithms
(Zhu, Leus, and Giannakis 2011)
(Yang, Zhang, and Xie 2012)
(Tan, Yang, and Nehorai 2013)
(Hung, Zheng, and Kaveh 2014)
Subgradient method

» (Ben-Tal and Teboulle 1989)

» (Shor 2012)
Smoothing technique

» Nesterov smoothing (Nesterov 2005)

» Moreau envelope (Moreau 1965)
Accelerated proximal gradient

» (Beck and Teboulle 2009)

Forward-backward-forward method
» (Combettes and Pesquet 2012)

vVvYyVvVvyy
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The Proposed Methods (1): L-based Smoothing

» Method 1: Reformulation of group-sparsity penalty h(x) by
considering the dual norm of /L norm

=1 Z 1Xg;ll2 = Z max_{n(Xg; Ug,)}

]
geQ QU g 112<

= max > {nixg, Ug,>} = maX{n<X wh (5
deQ
where Uy, = {u € R2NX1: |lug |2 < 1,Vg; € Q}
» Inspired by (Nesterov 2005), use a prox-function dj,(u)
(continuous and strongly convex on U, i.e.,
dy(u) > gllu—uol)
> h’2(x): smooth and convex

Bz (x) := max{n(x, u) - dj (u)} (6)

€Uy,
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The Proposed Methods (2): /1-based Smoothing

» Method 2: Consider the dual norm of /; norm

» Define v := |[xg,||2 and v € RN
19|
X)=n)_ ||Xg,||2—7721/:—77HVH1 (7)
9i€Q
Define a new function h(v) as
h(v) = nllv[l1 = max{n(v,u)}, 8)
ucl

h

where U, = {u € RN" : ||| < 1}

> h{f(x): smooth and convex w/ a strongly convex function
dj,(u)

hi(v) := max{n(v,u) — pdj, (u)} (9)

UGU[1
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The Proposed Methods (3)

Theorem

For any . > 0, the functions h’(x) and hli(v) are well-defined
and continuously differentiable in x and v, respectively.
Moreover, both functions are convex and their gradients:

l / I I
Vhz(x) =nu2,  Vh}(v)=nu" (10)

are Lipschitz continuous with the same constant L, = /J—U
where u® and uh are the optimal solutions to (6) and (9),

respectively.
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The Proposed Methods (4): Examples
» Choose d,(u) = }|ull3

> VhE(x) = nut € RV with ug = Sp(11xg,), Vg; where
S>(+) denotes the projection operator onto a ¢ unit ball

2 if |alz > 1
— J a2 11
52(a) {a, i Jlal2 < 1. (11)

> VA (v) = nuh € RV with u = () where Sy(")
denotes the projection operator onto an /¢, unit ball

1, if a; > 1,Vi
Si1(a) =1 a;, if |a;| <1,Vi (12)
-1, ifa < —1,,vi

» Zero-padding is performed such that
Vhi(x) := [V (v)T,07]7 € R2N*1 where 0 is a RN*! zero
vector

» Feasible if p <« s holds
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The Proposed Methods (5): Accelerated Smoothing

Proximal Gradient
Accelerated Smoothing Proximal Gradient (ASPQG)
» Solve

arg ;Q]i&{H,-(x) +x(X)},i=1or2. (13)

where H;(x) := f(x) + hﬁ(x), i =1or2, and its gradient
isVH;(x) = Vf(x) + nuh.

» Apply accelerated proximal gradient method (Parikh and
Boyd 2014) in which a proximal operator is used for any
function «(x):

.
prox,(y) = arg min {Z[ly - X||* +«()}.  (14)

» prox, . (y) of indicator function ¢ x(x) is the projection
operator onto the set X, My (X).
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The Proposed Methods (6): Algorithm

Algorithm: Accelerated Smoothing Proximal Gradient

Input: x° =x'=0;~ = 05

Step k: (k> 1) Let o := ¥ Compute

7:

1
2
3:
4:
5
6

wk+1 — xk + m(xk xk 1)
: repeat

Compute VA(wkt1) = GH(Gwk+! —y),
Compute VA (wWkt1) = puk if j = 2,
Compute VA (wkt1) = puh if i =1,

z = My (WKt — aVF(WhtT) — oV (W),

Break if Fj(z) < Fo(z,wkt1) =

Fi(wie) + (VR(W ) T(z — whe) + 5|z —

Update o := ~va,

8: return of ;= o, xkt1 .=z
Note 1: u” is composed of ”S,- =S ( k+1) vgi.
Note 2: uh = [S1(r)T,07]" where v; = |[w§ |2, v;

of v

= 1078; step-size a® = 1;

wk+1 ”g’

. I-th entry
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The Proposed Methods (7): Convergence Analysis
Theorem

Suppose xX is the k-th iterative solution in Algorithm, and X* is
the optimal solution of problem (4). Assume that
e-approximation is required, i.e., F(x¥) — F(x*) < e. If we set
W= 2%,’ where D; = MaXuey, d;(u), then

2(Ls +28y1x0 — x+|2
n (Lr+22) |

FOX) - F) < 5 )

(15)

where L; is Lipschitz continuous gradient parameter of f(X).
The number of iteration k has an upper bound by

0 _ yx||2 ,
\/4”" ex e, 4 2Py (16)

€o

» Convergence rate is (’)(%), better than subgradient
methods with O(ﬁ)
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Numerical Rresults
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Numerical Rresults (1)

DoA estimation problem

>

ULA with M = 8 sensors with d/A = 0.5, steering vector:
g(0) = [e_j(_(M_1)/2)2”%‘9/”9,'7 e e—j((M—1)/2)27r%sin6,]T

K = 2 plane waves with the actual DoAs
=[13.2220°,28.6022°].

L = 100 multiple sanpshots.

100 realizations at SNRs

DoA search grid is —90° ~ 90° with 1° separation, N=180
smoothing parameter ;. = 10~8
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Numerical Rresults (2)

DoA estimation problem: Performance comparison

(a) Power spectrum vs DoA at (b) RMSE of DoA
SNR=0 dB

Figure: DoA estimation.

19/26



Numerical Rresults (3)

DoA estimation problem: Computational complexity

Table: CPU Time (seconds) of Methods at SNR=0 dB

Algorithm

CVX

MUSIC

ASPG-L2

ASPG-L1

M+LFBF

M=8

22.52s

0.0061s

2.54s

2.74s

5.59s
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Conclusions
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Conclusion

v

Proposed two methods to smooth group sparsity penalty

» Resolution comparison in power spectrum

» li-based smoothing method better than L2-based
RMSE performance

» [i-based smoothing method approaches CVX method
Computational complexity

» lower than CVX method and M+LFBF

Convergence rate
» better than subgradient method

v

v

v

v

Have to choose the smoothing parameter carefully
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