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Surface monitoring during hydraulic fracturing
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m Low oil price urges for cost-effective long-term monitoring
m Increasing interests on surface geophone array monitoring

m Low cost comparing to wellbore array
m Good azimuth angle coverage
m Long term monitoring

m Microseismic events is a good indicator of subsurface
structure changes
m Event location
m Source mechanism
m Processing pipeline

m Pre-processing (QC and de-noise)
m Event detection

m Event localization

m Finding source mechanism
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Previous work on event localization

m Digitize the entire monitoring space into small blocks (grid
nodes)
m Semblance [Gharti et al., 2010, Frantiek* et al., 2014]

m Search all possible grid nodes using simple but fast method.

m Rely on the coherent signal energy across the receiver array.

m Low computation requirement, but might give misleading or
imprecise results.

m Back-propagation
[Gajewski and Tessmer, 2005, Haldorsen et al., 2012]

m Reverse time and back propagate wave field in digitized grids
based on wave equations.

m Take advantage of full waveform information.

m Effective but expensive (time and memory), especially for 3D
elastic wave.

m Sensitive to model error, can have poor focusing.

m Both methods were developed using single component data
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Example of traditional methods
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Figure 1 : Event localization from (a)semblance based method and (b)
reverse-time based method.
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3-component data and source mechanism

m 3-component(3-C) data is becoming popular
m Source mechanism is also important in reservoir monitoring

m Identify the source mechanism along with the localization
becomes possible
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Algorithm
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Problem setup

m Assumptions
m Event origin time is given by event detection
m Source waveform is available through wavelet estimation
m Only AWGN is considered after pre-processing
m Isotropic lossless layered velocity model
m Forward modelling of 3-C data
m For complicated model, Finite-difference is used to compute
Green's function
m For layered velocity model, Green's function for p-wave and
s-wave can be obtained by Generalized Ray Theory
[Ben-Menahem and Singh, 2012]
m Separate moment tensor and wave propagation due to
isotropy of the media
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Problem setup (cont.)

m Physical model
m For i*" source and receiver pair, a Green's function g[i] satisfies
uli] =gl[il*wxm

where u[f] is the data received, w is the source wavelet and m
is the moment tensor.

= Denote the convolution by G[i] £ g[i] * w. Stack G[i] into a
big matrix G and data matrix u[i] into u, we have

u=Gm (D)

where both G and m are unknown.

m For a set of receiver locations, fixed velocity model and source
wavelet, G is only a function of source location s, thus

u=G(s)m (2)
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Minimization problem

Original problem

er;!nr?lze lu — G(s)m||

m For a fixed s, m can be estimated by least squares

(s) = (G"(s)G(s))'G"(s)u (3)

New problem

Minimize J(s) £ u — G(s)(s)] (4)

In most cases, J(s) is a highly non-linear, non-convex function
of s.
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Searc r the minimum

m Grid search

m Small model, coarse grid
m Green's function of every source-receiver pair is evaluated
® Minimum is guaranteed

m Differential Evolution algorithm (DE)

m A smart way to sample the parameter space by population

m Mutation is introduced for each generation(iteration) based on
the current population

m Selected mutants are compared with current population, the
better one goes into the next generation

m Requires fewer evaluations of forward modelling (computation
of Green's function)
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Differential evolution

m Initialization: randomly select an initial population of D
agents consisting a set of parameters

= Mutation vp:
Vp = Xp1 + F(Xp2 — X3) (5)
where F € [0,2], xp1 to X3 are distinct and randomly selected
from current population.

m Crossover:

_J vy ifpp<Corj=RI
Y= { xj otherwise (6)

where p; ~ U(0,1), C € [0,1], and random index(RI) is
among {1,---,D}.

m Selection: Choose between u; and x; and keep the one with
lower cost function J(s).
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Synthetic Simulation
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Simulation setup

m 15 x 15 surface geophone array, double-couple moment sensor
shown below:

0.4330 —0.2500 0.7500
MT = |—0.2500 —0.4330 0.4330 (7)
0.7500  0.4330  0.0000

m Use PSNR as the measurement of noise level:

Dmax

PSNR = 20 |0g10 pn

(8)

where Dpax is the maximum magnitude of a trace and o is
the standard deviation of AWGN.

m The model size is of 30 x 30 x 15 grid points with 40m spatial
resolution
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Simulation setup
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Figure 2 :  Simulation setup: (i)array geometry and (ii)sample data with
25dB PSNR: (a)x, (b)y, (c)z components.
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Details about DE algorithm

m Off-grid point
m Move to the nearest grid node
m Green's function of each node will only be evaluated once in
the simulation
m Population size
m Rule of thumb: population size is 5 to 10 times the dimension
of parameter space
m In our example, the dimension of parameter space is three (x,
y, z): population size is 30
m Accuracy measurement
m The spatial resolution is 40m, the half diagonal distance is
about 30m (20v/2)
m 60m error will be acceptable, 30m error will be a good
estimation
m Terminal condition
m DE program can be restart at any iteration as long as the
population is saved
m Gradually increase the number of iteration until the cost

function is stable
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Convergence rate by iteration
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Population convergence as iteration increases

m Population converges slower than the estimated error
m Dot color and size indicate number of iterations
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Simulation results

m Accuracy
B acceptable accuracy (60m error) within 40 iteration
m good accuracy (30m error) within 60 iteration
m Robustness
m Reach good accuracy in 100 iteration down to 0 dB PSNR
m Event detection will break before the localization algorithm
m Computation requirement

m Grid search: 30 x 30 x 15 x 225 = 3,037,500 evaluation of
Green's function

m DE algorithm(C = 0.5): 15+ 0.5 x 30 x 60 x 225 = 205, 875
evaluation of Green’s function

m DE evaluates only 6.7% of all the grid nodes
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Conclusion
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Conclusion

m The proposed method integrates moment tensor inversion
and event localization

m Reduce the dimension of parameter space from 9 to 3 using
proposed scheme

m Synthetic simulation illustrates a good accuracy of proposed
method within reasonable number of iterations

m Differential evolution method evaluates significantly fewer
Green’s functions than grid search method
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Questions?

m Thanks for your attention!

= This work is supported by the Center for Energy and Geo Processing (CeGP) at Georgia Tech and by King
Fahd University of Petroleum and Minerals (KFUPM).

20/20



	Introduction
	Algorithm
	Synthetic Simulation
	Conclusion

