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Surface monitoring during hydraulic fracturing
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Summary

Low oil price urges for cost-effective long-term monitoring

Increasing interests on surface geophone array monitoring

Low cost comparing to wellbore array
Good azimuth angle coverage
Long term monitoring

Microseismic events is a good indicator of subsurface
structure changes

Event location
Source mechanism

Processing pipeline

Pre-processing (QC and de-noise)
Event detection
Event localization
Finding source mechanism
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Previous work on event localization

Digitize the entire monitoring space into small blocks (grid
nodes)

Semblance [Gharti et al., 2010, Frantiek* et al., 2014]

Search all possible grid nodes using simple but fast method.
Rely on the coherent signal energy across the receiver array.
Low computation requirement, but might give misleading or
imprecise results.

Back-propagation
[Gajewski and Tessmer, 2005, Haldorsen et al., 2012]

Reverse time and back propagate wave field in digitized grids
based on wave equations.
Take advantage of full waveform information.
Effective but expensive (time and memory), especially for 3D
elastic wave.
Sensitive to model error, can have poor focusing.

Both methods were developed using single component data
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Example of traditional methods

(a)

(b)

Figure 1 : Event localization from (a)semblance based method and (b)
reverse-time based method.
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3-component data and source mechanism

3-component(3-C) data is becoming popular

Source mechanism is also important in reservoir monitoring

Identify the source mechanism along with the localization
becomes possible

(a) 3-C data (b) Moment tensor
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Problem setup

Assumptions

Event origin time is given by event detection
Source waveform is available through wavelet estimation
Only AWGN is considered after pre-processing
Isotropic lossless layered velocity model

Forward modelling of 3-C data

For complicated model, Finite-difference is used to compute
Green’s function
For layered velocity model, Green’s function for p-wave and
s-wave can be obtained by Generalized Ray Theory
[Ben-Menahem and Singh, 2012]
Separate moment tensor and wave propagation due to
isotropy of the media
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Problem setup (cont.)

Physical model

For i th source and receiver pair, a Green’s function g [i ] satisfies

u[i ] = g [i ] ∗ w ×m

where u[i ] is the data received, w is the source wavelet and m
is the moment tensor.
Denote the convolution by G [i ] , g [i ] ∗ w . Stack G [i ] into a
big matrix G and data matrix u[i ] into u, we have

u = Gm (1)

where both G and m are unknown.

For a set of receiver locations, fixed velocity model and source
wavelet, G is only a function of source location s, thus

u = G(s)m (2)
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Minimization problem

Original problem

Minimize
s,m

‖u− G(s)m‖

For a fixed s, m can be estimated by least squares

m̂(s) = (GH(s)G(s))−1GH(s)u (3)

New problem

Minimize
s

J(s) , ‖u− G(s)m̂(s)‖ (4)

In most cases, J(s) is a highly non-linear, non-convex function
of s.
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Search for the minimum

Grid search

Small model, coarse grid
Green’s function of every source-receiver pair is evaluated
Minimum is guaranteed

Differential Evolution algorithm (DE)

A smart way to sample the parameter space by population
Mutation is introduced for each generation(iteration) based on
the current population
Selected mutants are compared with current population, the
better one goes into the next generation
Requires fewer evaluations of forward modelling (computation
of Green’s function)
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Differential evolution

Initialization: randomly select an initial population of D
agents consisting a set of parameters

Mutation vp:
vp = xp1 + F (xp2 − x3) (5)

where F ∈ [0, 2], xp1 to xp3 are distinct and randomly selected
from current population.

Crossover:

uj =

{
vj if pj ≤ C or j = RI
xj otherwise

(6)

where pj ∼ U(0, 1), C ∈ [0, 1], and random index(RI ) is
among {1, · · · ,D}.
Selection: Choose between ui and xi and keep the one with
lower cost function J(s).
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Simulation setup

15× 15 surface geophone array, double-couple moment sensor
shown below:

MT =

 0.4330 −0.2500 0.7500
−0.2500 −0.4330 0.4330
0.7500 0.4330 0.0000

 (7)

Use PSNR as the measurement of noise level:

PSNR = 20 log10
Dmax

σ
(8)

where Dmax is the maximum magnitude of a trace and σ is
the standard deviation of AWGN.

The model size is of 30× 30× 15 grid points with 40m spatial
resolution
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Simulation setup
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(ii) Data with 25 dB PSNR

Figure 2 : Simulation setup: (i)array geometry and (ii)sample data with
25dB PSNR: (a)x, (b)y, (c)z components.
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Details about DE algorithm

Off-grid point
Move to the nearest grid node
Green’s function of each node will only be evaluated once in
the simulation

Population size
Rule of thumb: population size is 5 to 10 times the dimension
of parameter space
In our example, the dimension of parameter space is three (x,
y, z): population size is 30

Accuracy measurement
The spatial resolution is 40m, the half diagonal distance is
about 30m (20

√
2)

60m error will be acceptable, 30m error will be a good
estimation

Terminal condition
DE program can be restart at any iteration as long as the
population is saved
Gradually increase the number of iteration until the cost
function is stable
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Convergence rate by iteration

Iterations
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Population convergence as iteration increases

Population converges slower than the estimated error

Dot color and size indicate number of iterations
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Simulation results

Accuracy

acceptable accuracy (60m error) within 40 iteration
good accuracy (30m error) within 60 iteration

Robustness

Reach good accuracy in 100 iteration down to 0 dB PSNR
Event detection will break before the localization algorithm

Computation requirement

Grid search: 30× 30× 15× 225 = 3, 037, 500 evaluation of
Green’s function
DE algorithm(C = 0.5): 15 + 0.5× 30× 60× 225 = 205, 875
evaluation of Green’s function
DE evaluates only 6.7% of all the grid nodes
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Conclusion

The proposed method integrates moment tensor inversion
and event localization

Reduce the dimension of parameter space from 9 to 3 using
proposed scheme

Synthetic simulation illustrates a good accuracy of proposed
method within reasonable number of iterations

Differential evolution method evaluates significantly fewer
Green’s functions than grid search method

18 / 20



References

Ben-Menahem, A., and S. Singh, 2012, Seismic waves and sources:
Springer New York.

Frantiek*, S., J. Valenta, D. Anikiev, and L. Eisner, 2014, Semblance for
microseismic event detection: SEG Technical Program Expanded
Abstracts 2014, 2178–2182.

Gajewski, D., and E. Tessmer, 2005, Reverse modmodel for seismic event
characterization: Geophysical Journal International, 163, 276–284.

Gharti, H. N., V. Oye, M. Roth, and D. Khn, 2010, Automated
microearthquake location using envelope stacking and robust global
optimization: GEOPHYSICS, 75, MA27–MA46.

Haldorsen, J., M. Milenkovic, N. Brooks, C. Crowell, and M. Farmani,
2012, Locating microseismic events using migration-based deconvolution:
SEG Technical Program Expanded Abstracts 2012, 1–5.

19 / 20



Questions?

Thanks for your attention!
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