

PERFORMANCE TRADE-OFF IN AN ADAPTIVE IEEE 802.11AD WAVEFORM DESIGN FOR A JOINT AUTOMOTIVE RADAR AND COMMUNICATION SYSTEM

Preeti Kumari¹, Duy H. N. Nguyen², and Robert W. Heath Jr.¹ ¹The University of Texas at Austin, TX, USA and ²San Diego State University, San Diego, USA

EEE 802.11AD WAVEFORM DESIGN	
Performar	ice Metric
etric: Max. Spectral Efficiency:	$r_{\mathrm{eff}} = \alpha \log_2 \left(1 + \mathrm{SNR}_{\mathrm{c}}\right)$ SNR
Range CRB:	$CRB_{d} = \frac{c^{2} \text{ Radar SNR}}{32\pi^{2}B_{rms}^{2}(1-\alpha)KSNR_{r}}$ RMS Bandwidth No. of Radar Symbols
Velocity CRB:	$CRB_v = \frac{6\lambda^2}{16\pi^2(1-\alpha)^3 K^3 T_s^2 SNR_r}$
on and Radar Metric:	
unication MMSE:	$\mathrm{MMSE}_{\mathrm{eff}} = 2^{-r_{\mathrm{eff}}} = \frac{1}{(1 + \mathrm{SNR}_{\mathrm{c}})^{\alpha}}$
ior work:	
on rate metric [5] is no c is analogous to distor deriving estimation rat	ot drawn from a countable distribution. rtion metric in rate distortion theory. es for several radar parameters.
aveform Desig	In Optimization
ze $\psi_d \log(\text{CRB}_d) + \lambda$ to $0 \le \alpha \le 1$	$v_v \log(\text{CRB}_v) - \omega_c \log(\text{MMSE}_{\text{eff}})$
nal fairness between r	adar and communication is ensured
ctors satisfy the condition	on: $\frac{\omega_d + 3\omega_v}{\omega_c} > r$
AND FUTUF	REWORK
onclusions	
gn that permits a trade- uracy	-off between:
MMSE metric based of and Gbps data rates	on rate distortion theory. simultaneously up to 280 m.
uture Work	
in the adaptive pream TDD frameworks for jo	ole to relax the trade-off. int radar and communication.
REFERENCES	

[1] L. Han and K. Wu, "Joint wireless communication and radar sensing systems-state of the art and future prospects," IET Microwaves, Antennas & Propagation, vol. 7, no. 11, pp. 876-885, 2013. [2] L. Reichardt, C. Sturm, F. Grunhaupt, and T. Zwick, "Demonstrating the use of the IEEE 802.11p car-to-car communication standard for automotive radar," in Proc. 6th Eur. Conf. Antennas Propag., 2012. [3] P. Kumari, N. Gonzalez-Prelcic, and R. W. Heath Jr., "Investigating the IEEE 802.11ad Standard for Millimeter Wave Automotive Radar," in Proc. IEEE Veh. Technol. Conf., September 2015. [4] P. Kumari, J. Choi, N. Gonzalez-Prelcic, and R. W. Heath Jr., "IEEE 802.11ad-based Radar: An Approach to Joint Vehicular Communication-Radar System," arXiv preprint arXiv:1702.05833, 2017.

ACKNOWLEDGEMENT

This material is based upon work supported in part by the National Science Foundation under Grant No. NSF-1549663 and by the U.S. Department of Transportation through the Data-Supported Transportation Operations and Planning (D-STOP) Tier 1 University Transportation Center

Electrical and Computer Engineering Cockrell School of Engineerin