DoA Estimation and Capacity Analysis for 3D Massive-MIMO/FD-MIMO OFDM System

Rubayet Shafin[‡], Lingjia Liu[‡], and Jianzhong (Charlie) Zhang^{*}

[‡]Department of EECS, University of Kansas, Lawrence, Kansas-66045, USA.

*Standard Research Laboratory, Samsung Research America - Dallas, Richardson, Texas-75082, USA

Outline

> Motivation

FD-MIMO System Model

> Analytical Results

Simulation Results

> Summary

Introduction

Massive MIMO: An Enabling Technology for 5G

Increased Spatial Resolution

Reduced MU Interference

Simplified Signal Processing

*Samsung's 5G Vision: Whitepaper, 2015.

**T. L. Marzetta, "Noncooperative cellular wireless with unlimited numbers of base station antennas," IEEE Trans. Wireless Commun., Nov. 2011.

FD-MIMO

Motivation

CSI is crucial for extracting all benefits of FD-MIMO

DoA-based Channel Estimation

Estimating CTF:

- Statistical Channel Model.
- Number of coefficients need to be estimated goes large with dimensionality of the channel.

$$\mathbf{H} = \begin{bmatrix} h_{11} & h_{12} & \dots & h_{1t} \\ h_{21} & h_{22} & \dots & h_{2t} \\ \vdots & & & & \\ h_{r1} & h_{r2} & \dots & h_{rt} \end{bmatrix}$$

$$\underbrace{x_1, x_2, \dots, x_n}_{\text{Observation}}$$

Parameter Estimation:

- ✤ Based on physical channel model.
- Captures more accurate propagation environment.
- Fewer parameters to be estimated.

FD-MIMO Scenario:

- ✤ DoA can help downlink beamforming.
- ↔ Massive MIMO: Increased spatial resolution and narrow-beam transmission.
- ✤ Hence, DoA is very crucial for FD-MIMO.

System Model

Channel impulse response for ℓ -th path:

System Model

After removing CP, time domain received signal:

 $\mathbf{b} = \text{vector containing complex channel gains}$ $\mathbf{A} = \begin{bmatrix} \mathbf{e}_r(n) & \mathbf{e}_r(n-1) & \dots & \mathbf{e}_r(n-N_c+1) \end{bmatrix}$ $\tilde{\mathbf{E}}_t = \begin{bmatrix} \mathbf{e}_t^H(n) & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{e}_t^H(n-1) & \dots & \mathbf{0} \\ & & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{e}_t^H(n-N_c+1) \end{bmatrix}$

DoA Estimation

Shift invariance property:

Choose two subarrays with the maximum overlap:

$$\mathbf{a}(\theta) = \begin{bmatrix} 1 & e^{j\mu} & \dots & e^{j(N-1)\mu} \end{bmatrix}^T$$
$$J_1 \mathbf{a}(\theta) e^{j\mu} = J_2 \mathbf{a}(\theta)$$

ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) utilizes this shift invariance property for parameter estimation.

Our noisy received signal:

$$\mathbf{Y} = \mathbf{AS} + \mathbf{W}$$

Equivalent Transmit Signal

The array steering matrix **A**, has the shift invariance property.

Hence, DoAs at the BS can be estimated using ESPRIT algorithm

DoA Estimation

Analytical Results

The frequency-domain uplink channel transfer function at the k-th subcarrier:

$$\mathbf{H}(k) = \sum_{\ell=0}^{N_c-1} \mathbf{C}(\ell) e^{\frac{-j2\pi k\ell}{N_c}} = \sum_{\ell=0}^{N_c-1} \alpha(\ell) \mathbf{e}_r(\ell) \mathbf{e}_t^H(\ell) e^{\frac{-j2\pi k\ell}{N_c}} = \sum_{\ell=0}^{N_c-1} \alpha(\ell) \mathbf{e}_r(\ell, k) \mathbf{e}_t^H(\ell)$$

This channel transfer function can be rearranged as:

$$\mathbf{H}(k) = \mathbf{A}(k) \mathbf{D} \mathbf{B}^H$$

where

$$\mathbf{A}(k) = [\mathbf{e}_r(0, k), \mathbf{e}_r(1, k), \dots, \mathbf{e}_r(N_c - 1, k)]$$
$$\mathbf{e}_r(\ell, k) = e^{\frac{-j2\pi k\ell}{N_c}} \mathbf{e}_r(\ell)$$
$$\mathbf{D} = \text{diag}\{\alpha(0), \alpha(1), \dots, \alpha(N_c - 1)\}$$
$$\mathbf{B} = [\mathbf{e}_t(0), \mathbf{e}_t(1), \dots, \mathbf{e}_t(N_c - 1)]$$

Then the frequency domain downlink channel transfer function:

$$\mathbf{H}^{dl}(k) = [\mathbf{H}(k)]^T = \mathbf{B}^* \mathbf{D} \mathbf{A}^T(k)$$

Analytical Results

The Mutual information for the downlink channel in the absence of DoA estimation error:

$$\mathcal{I}_{k} = \log_{2} \det \left[\mathbf{I}_{N_{t}} + \frac{\mathbf{H}^{dl}(k)\mathbf{Q}_{k}\mathbf{H}^{dl}(k)}{\sigma^{2}} \right]$$

where Q_k is the covariance matrix of the downlink transmit signal. System capacity then

$$\mathcal{C} = E\left\{\frac{1}{N_c}\sum_{k=0}^{N_c-1}\mathcal{I}_k\right\} = E\left\{\frac{1}{N_c}\sum_{k=0}^{N_c-1}\log_2\det\left[\mathbf{I}_{N_t} + \frac{\mathbf{H}^{dl}(k)\mathbf{Q}_k\mathbf{H}^{dl^H}(k)}{\sigma^2}\right]\right\}$$

We now consider the following Lemma:

Lemma 1: For a uniform rectangular array (URA) with azimuth and elevation DoAs drawn independently from a continuous distribution, the normalized frequency-domain array response vectors are orthogonal, that is, $\bar{\mathbf{e}}_r(i,k) \perp span\{\bar{\mathbf{e}}_r(j,k) | \forall i \neq j\}$ when N_r goes large.

Analytical Results

Using Lemma-1, optimum downlink precoding matrix, in the absence of DoA estimation error:

$$\mathbf{V}^{opt}(k) = \frac{1}{N_r} \mathbf{A}^*(k) = \frac{1}{N_r} [\mathbf{e}_r^*(0,k), \mathbf{e}_r^*(1,k), \dots, \mathbf{e}_r^*(N_c - 1,k)]$$

Then the mutual information is simplified:

$$\mathcal{I}_k = \log_2 \prod_{\ell} \left(1 + \frac{N_t |\alpha(\ell)|^2 p_\ell(k)}{\sigma^2} \right) = \sum_{\ell=0}^{N_c-1} \log_2 \left(1 + \gamma_\ell p_\ell(k) \right)$$

where

$$p_{\ell}(k) = [\mu_{\ell}(k) - 1/\gamma_{\ell}]^{\diamondsuit}$$

Power allocation follows the traditional water-filling algorithm.

Simulation Results

Simulation Results

Summary

* Accurate CSI is critical for FD-MIMO systems. In this work,

- ➤ A DoA- based channel estimation method has been presented.
- A capacity analysis of the channel based on DoA based channel estimation has been carried out.

***** Results show that:

- > Optimum downlink precoding matrix can be constructed in terms of only DoA vectors.
- Antenna configuration plays vital role in DoA estimation performance.

Future Work:

- > Formulating optimal precoding matrix in the presence of DoA estimation error.
- > Extending the work to MU-MIMO scenario.

Thank You

