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Motivation

e BIG Data generates huge amounts of data
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N’/ Applications

e Medical

— Most sensor data is indicative of normal

— The rare event is indicative of decease

e Other
- Gambling fraud or malfunction
- Credit card fraud
— Accounting, IRS
- Computer network intrusion
- Environmental monitoring
- Electric power grids

- Plant monitoring
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A Anomaly Detection with Universal
) Source Coding

o Atypical data can be thought of as anomalies

- But more general application: data discovery

e Looking for “unknown unknowns”

- Need universal approach — information theory /universal
source coding

e Aim
- Theoretically well-founded approach to anomaly detection
with information theory
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Is Information Theory Useful?

A Mathematical Theory of Communication

o [s 11
By C. E. SHANNON
-
INTRODUCTION
- N

HE recent development of various methods of modulation such as PCM

and PPM which exchange bandwidth for signal-to-noise ratio has in-
tensified the interest in a general theory of communication. A basis for
such a theory is contained in the important papers of Nyquist' and Hartley?
on this subject. In the present paper we will extend the theory to include a
number of new factors, in particular the effect of noise in the channel, and
the savings possible due to the statistical structure of the original message
and due to the nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message sclected at another
point. Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or conceptual
entities. These semantic aspects of communication arc irrelevant to the
engineering problem. The significant aspect is that the actual message is
one selecled from a sel of possible messages. The system must be designed
to operate for each possible selection, not just the one which will actually
be chosen since this is unknown at the time of design.
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Is Information Theory Useful?

e [s information theory fundamental?
- Entropy H(X) — Shortest codelength
- Mutual Information I(X;Y) — Channel capacity

e Minimum Descriptive Length (MDL)

— Used to estimate model order in SP

- But our thinking is that if the MDL of model A is shorter than
the MDL of model B, model A describes the data better

e Model A is fundamentally more meaningful

e This work is based on an assumption that information
is fundamental

— Information measure is not a measure but the measure
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Kolmogorov-Martin Lof Randomness
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Kolmogorov-Martin Lof Randomness

e Infinite sequence of bits 10011011010100001...

e When is the sequence truly (iid uniform) random?

- 50 years of failed attempts
- Solved by Martin-Lo6f in 1966

e Kolmogorov

- Typical sequences: truly random sequence

— Special sequences: other sequences

e Random Sequence
de > 0vn >1: K(z|l],...,zn]) >n—c
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e QOutlier detection

Outlier
- Low likelihood, rarity: Ci(x) large
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Atypicality

A sequence is atypical if it can be described (coded)
with fewer bits in itself rather than using the
(optimum) code designed for typical sequences.

. - Cy(x) — Cy(x) >0
e QOutlier detection

Outlier
- Low likelihood, rarity: Ci(x) large

e [id random case

10011011010100001-
11111111111111111-

— Cix) same, but C,(x) different

=Equal probability

e Also prioritizes these cases
The larger C;(z) — C,(z) the more atypical
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Binary IID sequences

0000110100111111111111000101010111110001

10 UNIVE\RSITY of HAWAI'T at MANOA



“\ AAAAAAAAA

Binary IID sequences

e Default law: P(0)=1-p, P(1)=p, p known

0000110100111111111111000101010111110001

10 UNIVE\RSITY of HAWAI'T at MANOA



Al

Binary IID sequences

e Default law: P(0)=1-p, P(1)=p, p known
- Codelength L,(1) = (ﬁlog% + (1 —p)log ﬁ) D= % S X

0000110100111111111111000101010111110001

10 UNIVE\RSITY of HAWAI'T at MANOA




N\ AAAAAAAAA

Binary IID sequences

e Default law: P(0)=1-p, P(1)=p, p known
_ Codelength L(l) =1 (ﬁlog% + (1 —p)log ﬁ) D= % S X
e Alternative law: P(1)=p

0000110100111111111111000101010111110001

10 UNIVE\RSITY of HAWAI'T at MANOA




N\ AAAAAAAAA

Binary IID sequences

e Default law: P(0)=1-p, P(1)=p, p known
_ Codelength L(l) =1 (ﬁlog% + (1 —p)log ﬁ) D= % S X
e Alternative law: P(1)=p

— Universal source code from Cover’s book

0000110100111111111111000101010111110001

10 UNIVE\RSITY of HAWAI'T at MANOA




N\ AAAAAAAAA

Binary IID sequences

e Default law: P(0)=1-p, P(1)=p, p known
_ Codelength L(l) =1 (ﬁlog% + (1 —p)log ﬁ) D= % S X
e Alternative law: P(1)=p

— Universal source code from Cover’s book
- Codelength L;(1) = IH(p) + % log!

0000110100111111111111000101010111110001

10 UNIVE\RSITY of HAWAI'T at MANOA




N\ AAAAAAAAA

Binary IID sequences

e Default law: P(0)=1-p, P(1)=p, p known
_ Codelength L(l) =1 (ﬁlog% + (1 —p)log ﬁ) D= % S X
e Alternative law: P(1)=p

— Universal source code from Cover’s book
- Codelength L;(1) = IH(p) + % log!
e Need to tell beginning and end

0000110100111111111111000101010111110001

10 UNIVE\RSITY of HAWAI'T at MANOA




N\ AAAAAAAAA

Binary IID sequences

e Default law: P(0)=1-p, P(1)=p, p known
_ Codelength L(l) =1 (ﬁlog% + (1 —p)log ﬁ) D= % S X
e Alternative law: P(1)=p

— Universal source code from Cover’s book
- Codelength L;(1) = IH(p) + % log!
e Need to tell beginning and end

10000110100.111111111111000101010111110001
=
\ l
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- Codelength L;(1) = IH(p) + % log!
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Binary IID sequences

e Default law: P(0)=1-p, P(1)=p, p known

_ Codelength L(l) =1 (ﬁlog% + (1 —p)log ﬁ) D= % S X
e Alternative law: P(1)=p

— Universal source code from Cover’s book

- Codelength L;(1) = IH(p) + % log!
e Need to tell beginning and end

- Cost of encoding *.: 7 = log ﬁ

- Cost of encoding length (Rissanen, Elias):
log*(l) = logl + loglog! + log loglog

e Total codelength
3
L;(l) =1H(p) + 5 logl+ T
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Binary IID sequences

e Default law: P(0)=1-p, P(1)=p, p known

_ Codelength L(l) =1 (ﬁlog% + (1 —p)log ﬁ) D= % S X
e Alternative law: P(1)=p ;

- Codelength: Lf)(l) - lH(ﬁ) + 5 logl + 7

12 UNIVE\RSITY of HAWAI'T at MANOA



N\ AAAAAAAAA

Binary IID sequences

e Default law: P(0)=1-p, P(1)=p, p known

_ Codelength L(l) =1 (ﬁlog% + (1 —p)log ﬁ) D= % S X
e Alternative law: P(0)=p ;

- Codelength: L;(1) = [H(p) + 5 logl+ 7
e Atypicality criterion

X T+ 3 log
D(pllp) > -

[
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Theoretical Analysis

e The probability P4 that a sequence of length 1 is
classified as atypical is bounded by

o .
Py <2 HZS?K(Z’T)’ VT llgglo K(l,7)=1
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Theoretical Analysis

e The probability P4 that a sequence of length 1 is
classified as atypical is bounded by

o
Py <27 HZSWK(Z T), VT ZEI?OK(Z T) =

e Consider the case p=4. The probability Pa(X,) that a

given sample X, is part of an atypical subsequence of
any length is upper bounded by

Pa(X,) < (Ky/7+ K3)2”

for some constants Ki, K»
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N/ Real-Valued Data

A sequence is atypical if it can be described (coded)
with fewer bits in itself rather than using the
(optimum) code designed for typical sequences.
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- Definition based on exact encoding, not rate-distortion

e Exact encoding of real-valued data
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e Abstract encoding

- Fixed point, r bits after ., unlimited bits prior

- Codelength (Rissanen) -
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Real-Valued Data

. A sequence is atypical if it can be described (coded)
with fewer bits in itself rather than using the
(optimum) code designed for typical sequences.

c+27"
L(x) =— log/ f)dt ~ —log(f(x)) +r

e Only need comparison of codelengths

— r cancels out
- Can let r—oo, L(x)=-log(f(x))

e Parametric model f(x|0)

- Need to encode data and parameters

. k
- Rissanen’s MDL: L = —log f(x|60wm1,)

5 logl
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Vector Gaussian case

» Model x[n] = s(6) + wn]

where w[n| ~ N (0, X), s(0) k-parameter

e Used to find atypical relationships between data
streams

e Theorem: Probability of intrinsically atypical

Sequence
, In Pa(l)
lim su <1
oo EE21Inl
» Or Pi() < 1"
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e Atypicality criterion
f(x|0) k42

r(x) = —log

f(x]6)

¢ Chernoff bound
k

2

P(r60 2 7+ 5521051 ) < exp(s -

of [ fors < In?2

2

log 1)) M;(

e Need to prove M, (s) = Ele’"] < K < oo independent
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— In

p(x

e Need to prove M, (s) = Ele*"| < K < oo independent
of [ for s <In?2
1

p(x

Heret = Z,ln_l x|n| is sufficient statistic
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e Need to prove M, (s) = Ele’"] < K < oo independent
of [for s < In2

1 S
ElesT] < ( tTE—1t>
el < (27r)l/2\/1det2/ P22

1
X exp <_2_lth—lt> dt

<K

e Here t = Z,lnzl x|n| is sufficient statistic
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N/ Example: S & P 500

e Daily trading prices 1998-2013

¢ 9 tech stocks
- ADP, AMD, HP, IBM, Intel, Microsoft, Oracle, Yahoo
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e Daily trading prices 1998-2013

e 9 tech stocks

- ADP, AMD, HP, IBM, Intel, Microsoft, Oracle, Yahoo
- Atypical segment in 2003

- Not clear from stocks themselves

- Low point of Nasdaq after bubble

- Perhaps stocks move more in sync?
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Conclusion

e We have developed an information theory criterion of
atypicality
- Fundamental

e Works for

— Discrete valued data

— Real valued data

e Upper bounded probability of intrinsically atypical
data

— Same for real and discrete case

e Experimental results for stock market data

UNIVE\RSITY of HAWAI'T at MANOA



