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Applications
•Medical

– Most sensor data is indicative of normal
– The rare event is indicative of decease

•Other
– Gambling fraud or malfunction
– Credit card fraud
– Accounting, IRS
– Computer network intrusion
– Environmental monitoring
– Electric power grids
– Plant monitoring  

               ⋮
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Anomaly Detection with Universal 
Source Coding

• Atypical data can be thought of as anomalies
– But more general application: data discovery

• Looking for “unknown unknowns”
– Need universal approach ➝ information theory/universal 

source coding

• Aim
– Theoretically well-founded approach to anomaly detection 

with information theory
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– Entropy H(X) → Shortest codelength
– Mutual Information I(X;Y) → Channel capacity

•Minimum Descriptive Length (MDL)
– Used to estimate model order in SP
– But our thinking is that if the MDL of model A is shorter than 

the MDL of model B, model A describes the data better
•Model A is fundamentally more meaningful

• This work is based on an assumption that information 
is fundamental
– Information measure is not a measure but the measure
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Kolmogorov-Martin Löf Randomness

• Infinite sequence of bits 10011011010100001…
•When is the sequence truly (iid uniform) random?

– 50 years of failed attempts
– Solved by Martin-Löf in 1966

• Kolmogorov
– Typical sequences: truly random sequence
– Special sequences: other sequences

• Random Sequence

7

9c > 08n > 1 : K(x[1], . . . , x[n]) � n� c
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Atypicality

•Outlier detection
– Low likelihood, rarity: Ct(x) large

• Iid random case

– Ct(x) same, but Ca(x) different

•Also prioritizes these cases
– The larger                           the more atypical 

9

A sequence is atypical if it can be described (coded) 
with fewer bits in itself rather than using the 
(optimum) code designed for typical sequences.

Ct(x)� Ca(x) > 0
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Binary IID sequences
•Default law: P(0)=1-p, P(1)=p, p known

– Codelength

•Alternative law: P(1)≠p
– Universal source code from Cover’s book
– Codelength

•Need to tell beginning and end
– Cost of encoding ‘.’: 
– Cost of encoding length (Rissanen, Elias):

• Total codelength

11

Lp̂(l) = lH(p̂) + 1
2 log l

L(l) = l
⇣
p̂ log 1

p + (1� p̂) log 1
1�p

⌘
, p̂ =

1
l

P
Xi

⌧ = log

1
P (0.0)

log

⇤
(l) = log l + log log l + log log log l + · · ·

Lp̂(l) = lH(p̂) +

3

2

log l + ⌧



T

UNIVERSITY of HAWAI‘I at MĀNOA

Binary IID sequences
•Default law: P(0)=1-p, P(1)=p, p known

– Codelength

•Alternative law: P(1)≠p
– Codelength: 

12

L(l) = l
⇣
p̂ log 1

p + (1� p̂) log 1
1�p

⌘
, p̂ =

1
l

P
Xi

Lp̂(l) = lH(p̂) +

3

2

log l + ⌧



T

UNIVERSITY of HAWAI‘I at MĀNOA

Binary IID sequences
•Default law: P(0)=1-p, P(1)=p, p known

– Codelength

•Alternative law: P(0)≠p
– Codelength: 

•Atypicality criterion

13
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Theoretical Analysis
• The probability PA that a sequence of length l is 

classified as atypical is bounded by

• Consider the case p=½. The probability PA(Xn) that a 
given sample Xn is part of an atypical subsequence of 
any length is upper bounded by  
 
 
for some constants K1, K2

15

PA 2�⌧+1 1
l3/2

K(l, ⌧), 8⌧ : lim
l!1

K(l, ⌧) = 1

PA(Xn)  (K1
p

⌧ + K2)2�⌧
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Real-Valued Data
•Abstract encoding

– Fixed point, r bits after ., unlimited bits prior
– Codelength (Rissanen)

•Only need comparison of codelengths
– r cancels out
– Can let r→∞, L(x)=-log(f(x))

• Parametric model
– Need to encode data and parameters
– Rissanen’s MDL:  

17

L(x) = � log

Z
x+2�r

x

f(t)dt ⇡ � log(f(x)) + r

A sequence is atypical if it can be described (coded) 
with fewer bits in itself rather than using the 
(optimum) code designed for typical sequences.

f(x|✓)

L = � log f(x|ˆ✓ML) +
k

2

log l



T

UNIVERSITY of HAWAI‘I at MĀNOA

Vector Gaussian case
•Model  
 
where                                        k-parameter                              

•Used to find atypical relationships between data 
streams

• Theorem: Probability of intrinsically atypical 
sequence

•Or

18

x[n] = s(✓) +w[n]

w[n] ⇠ N (0,⌃), s(✓)

lim sup
l!1

lnPA(l)
k+2
2 ln l

 1

PA(l) . l
k+2
2
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Vector Gaussian case
•Model  
 
where                                        k-parameter                              

•Used to find atypical relationships between data 
streams

• Theorem: Probability of intrinsically atypical 
sequence

•Or

20

x[n] = s(✓) +w[n]

w[n] ⇠ N (0,⌃), s(✓)

lim sup
l!1

lnPA(l)
k+2
2 ln l

 1

PA(l) . l
k+2
2
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Proof
•Atypicality criterion

• Chernoff bound

•Need to prove                                               independent 
of l for 

21

r(x) = � log

f(x| ˆ✓)
f(x|✓) � ⌧ +

k + 2

2

log l

P

✓
r(x) � ⌧ +

k + 2

2

log l

◆
 exp(�s(⌧ +

k + 2

2

log l))Mr(s)

Mr(s) = E[esr]  K < 1
s < ln 2
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Proof
•Need to prove                                               independent 

of l for 

•Here                           is sufficient statistic

22

Mr(s) = E[esr]  K < 1
s < ln 2

� ln
p(x|✓̂)
p(x|✓) =

1

2

lX

n=1

x[n]T⌃�1
x[n]

� 1

2

lX

n=1

⇣
x[n]� s(✓̂)

⌘T
⌃

�1
⇣
x[n]� s(✓̂)

⌘

 1

2l

 
lX

n=1

x[n]

!T

⌃

�1

 
lX

n=1

x[n]

!

t =
Pl

n=1 x[n]
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Proof
•Need to prove                                               independent 

of l for

•Here                           is sufficient statistic  
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Mr(s) = E[esr]  K < 1
s < ln 2

E[esr]  1

(2⇡)l/2
p
ldet⌃

Z
exp

⇣ s

2l ln 2
tT⌃�1t

⌘

⇥ exp

✓
� 1

2l
tT⌃�1t

◆
dt

 K

t =
Pl

n=1 x[n]
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Example: S & P 500
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Example: S & P 500
•Daily trading prices 1998-2013
• 9 tech stocks

– ADP, AMD, HP, IBM, Intel, Microsoft, Oracle, Yahoo
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Example: S & P 500
•Daily trading prices 1998-2013
• 9 tech stocks

– ADP, AMD, HP, IBM, Intel, Microsoft, Oracle, Yahoo
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Example: S & P 500
•Daily trading prices 1998-2013
• 9 tech stocks

– ADP, AMD, HP, IBM, Intel, Microsoft, Oracle, Yahoo
– Atypical segment in 2003

– Not clear from stocks themselves
– Low point of Nasdaq after bubble

– Perhaps stocks move more in sync?

25
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Conclusion
•We have developed an information theory criterion of 

atypicality
– Fundamental

•Works for
– Discrete valued data
– Real valued data

•Upper bounded probability of intrinsically atypical 
data
– Same for real and discrete case

• Experimental results for stock market data
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