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Abstract—Biased estimators can outperform unbiased ones in
terms of the mean square error (MSE). In this work we treat
all estimators in the Bayesian framework, where the best linear
unbiased estimator (BLUE) fulfills the so called global conditional
unbiased constraint. Recently, component-wise conditionally un-
biased linear minimum mean square error (CWCU LMMSE)
estimators have been introduced. These estimators preserve a
quite strong (namely the CWCU) unbiasedness condition which
in effect sufficiently represents the intuitive view of unbiasedness,
while in fact they are in general global conditionally biased.
Overall, CWCU LMMSE estimators constitute an interesting
compromise between the BLUE and the LMMSE estimator.
We briefly recapitulate CWCU LMMSE estimation under linear
model assumptions, and additionally derive the CWCU LMMSE
estimator under the (only) assumption of jointly Gaussian param-
eters and measurements. The main intent of this work, however, is
the extension of the theory of CWCU estimation to CWCU widely
linear estimators. We derive the CWCU WLMMSE estimator
for different model assumptions and address the analytical
relationships between the CWCU WLMMSE and the WLMMSE
estimators. The properties of CWCU WLMMSE estimators
are deduced analytically, and compared to global conditionally
unbiased as well as WLMMSE counterparts with the help of a
parameter estimation application.

Index Terms—Bayesian Estimation, Best Linear Unbiased
Estimator, Linear Minimum Mean Square Error, Widely Linear
Estimation, component-wise conditionally unbiased, CWCU

I. INTRODUCTION

USUALLY, when we talk about unbiased estimation of a
parameter vector x ∈ Cn out of a measurement vector

y ∈ Cm, then the estimation problem is treated in the classical
framework, where x is treated as deterministic but unknown
[1]- [4]. Letting x̂ = g(y) be an estimator of x, then the
classical unbiased constraint asserts that

Ey[x̂] =

∫
g(y)p(y;x)dy = x for all possible x, (1)

where p(y;x) is the probability density function (PDF) of
vector y parametrized by the unknown parameter vector x.
The index of the expectation operator shall indicate the PDF
over which the averaging is performed. In the Bayesian
approach on the other hand x is treated as a random vector.
The Bayesian unbiased constraint is

Ey,x[x̂− x] =

∫∫
(g(y)− x) p(x,y)dxdy = 0, (2)
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where the integration is performed over the joint PDF of x
and y. Compared to the classical unbiased constraint in (1),
the Bayesian unbiased constraint is a much softer requirement,
which will be particularly discussed in Section VII. However,
Bayesian estimators in general allow to incorporate prior
knowledge about the statistics of x.

Eq. (1) can also be formulated in the Bayesian framework.
Here, the corresponding problem arises by demanding global
conditional unbiasedness, i.e.

Ey|x[x̂|x] =

∫
g(y)p(y|x)dy = x for all possible x. (3)

The attribute global indicates that the condition is made
on the whole parameter vector x. However, the constricting
requirement in (3) prevents the exploitation of prior knowledge
about the parameters, and hence leads to a significant reduction
in the benefits brought about by the Bayesian framework.

In component-wise conditionally unbiased (CWCU)
Bayesian parameter estimation [5]- [9], instead of constraining
the estimator to be globally unbiased, we aim for achieving
conditional unbiasedness on one parameter component at a
time. Let xi be the ith element of x, and x̂i = gi(y) be an
estimator of xi. Then the CWCU constraints are

Ey|xi
[x̂i|xi] =

∫
gi(y)p(y|xi)dy = xi, (4)

for all possible xi (and all i = 1, 2, ..., n). The CWCU con-
straints are less stringent than the global conditional unbiased-
ness condition in (3), and it will turn out that a CWCU estima-
tor in many cases allows the incorporation of prior knowledge
about the statistical properties of the parameter vector. In
the following we denote the linear estimator fulfilling the
CWCU constraints and minimizing the Bayesian mean square
error (BMSE) the CWCU linear minimum mean square error
(CWCU LMMSE) estimator. The CWCU LMMSE estimator
cannot outperform the LMMSE estimator in a BMSE sense
since it minimizes the BMSE under the additional constraints
in (4), while the LMMSE estimator’s only restriction is the
linearity constraint. However, the CWCU estimators feature
their inherent conditional unbiasedness property, which is
visualized for a particular example in Fig. 1 (taken from
[9]). In this example channel distorted and noisy received
quadrature amplitude modulated (QAM) data symbols are
estimated by the best linear unbiased estimator (BLUE), which
fulfills (1), (2) and (4), the CWCU LMMSE estimator which
fulfills (2) and (4), and the LMMSE estimator which only
fulfills the weakest constraint (2). Fig. 1 shows the relative
frequencies of the corresponding estimates in the complex
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Fig. 1. Visualization of the relative frequencies of the BLUE, the CWCU
LMMSE estimator, and the LMMSE estimator, respectively. The black crosses
mark the ideal 4-QAM constellation points.

plane. The BLUE and the CWCU LMMSE estimator have
their estimates centered around the true constellation points
since these estimators fulfill the CWCU constraints. Note that
in Fig. 1 the BMSE of the CWCU LMMSE estimator is clearly
below the one of the BLUE. This further advantage is due to
the fact that the CWCU constraints allow for the incorporation
of prior knowledge about the data in this example. The
LMMSE estimator is conditionally biased towards the prior
mean which is 0. For details on that example we refer the
reader to [9]. More examples and beneficial applications of
the CWCU LMMSE estimator can be found in [5]- [7].

The theory of the CWCU LMMSE estimator under lin-
ear model assumptions has been discussed in [8]- [9]. The
estimator is of the form x̂ = Ey + b with appropriate
sized matrix E and vector b, and it is mainly designed for
proper measurement vectors. For the definition of propriety
we refer to Section II and [10]. We briefly recapitulate these
results on CWCU LMMSE estimation in this paper, and
additionally derive the CWCU LMMSE estimator under the
assumption of jointly Gaussian x and y (with no additional
model assumptions). The main intent of this work, however,
is the extension of the theoretical framework of CWCU linear
estimation to CWCU widely linear estimators of the form

x̂ = Ey + Fy∗ + b, (5)

with E and F as the estimator matrices. In general, when
the measurement vector y turns improper [10], widely linear
estimators are preferable over linear estimators [11]. For the
LMMSE estimator and the widely linear MMSE (WLMMSE)
estimator the particular form of the joint PDF p(x,y) does
not play a role, the estimators are unambiguously defined by
their first and second order statistics. However, the situation
is different for CWCU estimators. The CWCU WLMMSE
estimator always exists, and in the worst case it coincides with
the best widely linear unbiased estimator (BWLUE). However,
in a number of practically interesting situations, the CWCU
WLMMSE estimator is able to outperform the BWLUE. In
this paper we derive the CWCU WLMMSE estimator

(a) under the assumption of jointly generalized complex
Gaussian x and y,

(b) under the assumption of real x, complex y, and jointly
Gaussian x, Re{y}, and Im{y}.

(c) under the linear model assumption with generalized com-
plex Gaussian x and zero mean noise with known second
order statistics,

(d) under the linear model assumption with real Gaussian x
and zero mean noise with known second order statistics,

(e) under the linear model assumption with mutually inde-
pendent complex (and otherwise arbitrarily distributed)
parameters and zero mean noise with known second order
statistics, and

(f) under the linear model assumption with mutually inde-
pendent real (and otherwise arbitrarily distributed) pa-
rameters and zero mean noise with known second order
statistics.

We also address the analytical relationship between the CWCU
WLMMSE and the WLMMSE estimator, which is not as
straight forward as the relationship between the CWCU
LMMSE and the LMMSE estimator regarded in [9].

The rest of the paper is organized as follows: In Section
II we recapitulate the mathematical preliminaries required to
derive the linear and particularly the widely linear estimators
in this work. In Section III we extend linear CWCU estimation
by a certain case not handled so far in our former papers.
Then we turn to widely linear estimation. Section IV contains
the prerequisites and derivations of the CWCU WLMMSE
estimator under jointly Gaussian assumptions for x and y.
In Section V we assume an underlying linear model, which
allows to relax some prerequisites from the previous section.
Here we differ between correlated Gaussian parameter
vectors and parameter vectors with mutually independent
elements. Section VI contains an example, where the CWCU
WLMMSE estimator is compared in performance to the
well known estimators BLUE, BWLUE, LMMSE estimator,
WLMMSE estimator and to the CWCU LMMSE estimator.
Finally, Section VII compares all regarded estimators from
an optimization point of view.

Notation:
Lower-case bold face variables (a, b,...) indicate vectors, and
upper-case bold face variables (A, B,...) indicate matrices.
We further use R and C to denote the set of real and complex
numbers, respectively, (·)T to denote transposition and (·)H
to denote conjugate transposition, In×n to denote the identity
matrix of size n × n, and 0m×n to denote the zero matrix
of size m × n. If the dimensions are clear from the context
we simply write I and 0, respectively. E[·] denotes the
expectation operator. In most of the cases we use an index to
denote the averaging PDF, however, if the averaging PDF is
clear from context, the index is sometimes omitted.

II. PRELIMINARIES FOR WIDELY LINEAR ESTIMATORS

In this section we recapitulate the preliminaries required to
derive the linear and particularly the widely linear estimators
in this work. This section is more or less a shortened version
of the corresponding parts in [10], where an excellent intro-
duction to improper data and widely linear processing can be
found.

A. Linear and Widely Linear Transformations

We start by constructing three closely related vectors from
two real vectors xr ∈ Rn and xi ∈ Rn. The first is the real
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composite 2n-dimensional vector xR =
[
xTr xTi

]T
, obtained

by stacking xr on top of xi. The second is the complex vector
x = xr + jxi, such that xr = Re{x} and xi = Im{x}, and
the third is the complex augmented vector

x =

[
x
x∗

]
, (6)

obtained by stacking x on top of its complex conjugate x∗. The
space of complex augmented vectors, whose bottom entries are
the complex conjugates of the top entries, is denoted by C2n

∗ .
Augmented vectors are always underlined. In much of our
discussion, our focus will be on complex-valued quantities,
where we will be using x and its augmentation x.

The complex augmented vector x ∈ C2n
∗ is related to the

real composite vector xR ∈ R2n as x = TnxR and xR =
1
2T

H
n x, where the real-to-complex transformation matrix

Tn =

[
I jI
I −jI

]
∈ C2n×2n (7)

is unitary up to a factor of 2, i.e., TnT
H
n = TH

n Tn = 2I.
The complex augmented vector x is obviously an equivalent
redundant, but convenient, representation of xR. When the size
of Tn is clear, we may drop the subscript for economy.

In the following we consider widely linear transformations
of the form

y = H1x + H2x
∗. (8)

The augmented version of y can easily found to be

y =

[
H1 H2

H∗2 H∗1

] [
x
x∗

]
= Hx. (9)

The matrix H is called an augmented matrix, it satisfies a
particular block pattern, where the SE block is the conjugate
of the NW block, and the SW block is the conjugate of the
NE block. Obviously, the set of complex linear transformations
y = H1x, with H2 = 0, or equivalently

y =

[
H1 0
0 H∗1

] [
x
x∗

]
= Hx (10)

is a subset of the set of widely linear transformations.

B. Linear and Widely Linear Estimators

The estimators derived in this work will be compared to well
known estimators like the BLUE, the BWLUE, the LMMSE
and the WLMMSE estimator. Let x ∈ Cn be the parameter
vector to be estimated and y ∈ Cm be the measurement vector,
then a widely linear (or actually affine) estimator takes on the
form

x̂ = Ey + Fy∗ + b. (11)

In general widely linear estimators are superior to their linear
counterparts as soon as the measurements y turn improper,
see [12]- [20] for some possible applications of widely linear
estimators. In the Sections on CWCU WLMMSE estimators
we introduce

W =
[
E F

]
(12)

and write (11) usually in the form

x̂ = Wy + b. (13)

Another way to express the estimator is its augmented version

x̂ =

[
E F
F∗ E∗

] [
y
y∗

]
+ b = Ey + b. (14)

For linear estimators we have F = 0 such that x̂ = Ey + b.
The LMMSE estimator minimizing the BMSE cost function
Ex,y[|x̂i−xi|2] for i = 1, 2, · · · , n and fulfilling the Bayesian
unbiased constraint in (2) is given by

x̂ = Ex[x] + CxyC
−1
yy (y − Ey[y]). (15)

It’s widely linear counterpart, the WLMMSE estimator, is most
compactly written in its augmented form [10], [11]

x̂ = Ex[x] + CxyC
−1
yy (y − Ey[y]). (16)

Many technical problems are described by the linear model

y = Hx + n, (17)

where H ∈ Cm×n is a known observation matrix, x has mean
Ex[x] and covariance matrix Cxx, and n ∈ Cm is a zero mean
noise vector with covariance matrix Cnn and independent of
x. The augmented version of (17) is

y = Hx + n, (18)

where H is defined as

H =

[
H 0
0 H∗

]
. (19)

If the parameter vector x and the measurement vector y are
connected via the linear model, then the BLUE fulfilling the
global unbiased constraint (1) is [21]

x̂ = (HHC−1
nnH)−1HHC−1

nny. (20)

Its widely linear counterpart, the BWLUE, can be identified
to be [10]

x̂ = (HHC−1
nnH)−1HHC−1

nny, (21)

and it also fulfills (1). The BLUE and the BWLUE are usually
treated in the classical framework, where x is assumed to
be unknown but deterministic. The BWLUE is only able to
outperform the BLUE if the noise n is improper (c.f. [10]).

C. Statistics of Complex-Valued Random Vectors

In order to characterize the second-order statistical proper-
ties of x = xr+jxi, we start by considering the real composite
random vector xR. Its covariance matrix is

CxRxR = E[(xR−E[xR])(xR−E[xR])T ] =

[
Cxrxr

Cxrxi

CT
xrxi

Cxixi

]
(22)

with Cxrxr = E[(xr − E[xr])(xr − E[xr])
T ], Cxrxi =

E[(xr − E[xr])(xi − E[xi])
T ], and Cxixi = E[(xi −

E[xi])(xi − E[xi])
T ]. The augmented covariance matrix of

x is

Cxx = E[(x− E[x])(x− E[x])H ] (23)

= TCxRxRT
H (24)

=

[
Cxx C̃xx

C̃∗xx C∗xx

]
= CH

xx ∈ C2n×2n, (25)
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with Cxx = Ex[(x−Ex[x])(x−Ex[x])H ] as the (Hermitian
and positive semi-definite) covariance matrix and C̃xx =
Ex[(x−Ex[x])(x−Ex[x])T ] as the complementary covariance
matrix. For Cxx and C̃xx we have

Cxx = Cxrxr + Cxixi + j(CT
xrxi
−Cxrxi) = CH

xx, (26)

and

C̃xx = Cxrxr
−Cxixi

+ j(CT
xrxi

+ Cxrxi
) = C̃T

xx, (27)

respectively. C̃xx is sometimes also referred to as pseudo-
covariance matrix or conjugate covariance matrix. If C̃xx = 0,
then the vector x is called proper, otherwise improper [22]-
[27]. The conditions for propriety on the covariance and cross-
covariance of real and imaginary parts xr and xi are Cxrxr

=
Cxixi

and Cxrxi
= −CT

xrxi
. When x = xr + jxi is scalar,

then Cxrxi
= 0 is necessary for propriety. If x is proper, its

Hermitian covariance matrix is

Cxx = 2Cxrxr
− 2jCxrxi

= 2Cxixi
+ 2jCT

xrxi
, (28)

and its augmented covariance matrix Cxx is block-diagonal.
If complex x is proper and scalar, then Cxx = 2Cxrxr =
2Cxixi . It is easy to see that propriety is preserved by
strictly linear transformations, which are represented by block-
diagonal augmented matrices.

D. Gaussian Random Vectors

To simplify notation we regard zero mean vectors in the
following. Clearly the Gaussian PDF of the real composite
2n-dimensional vector xR =

[
xTr xTi

]T
is [10], [28]

p(xR) =
1

(2π)
2n
2
√

detCxRxR

exp

{
−1

2
xTRC

−1
xRxR

xR

}
. (29)

Using xR = 1
2T

Hx, C−1
xRxR

= THC−1
xxT, and detCxRxR =

2−2n detCxx, we obtain the PDF of complex x [29], [30]

p(x) =
1

πn
√

detCxx

exp

{
−1

2
xHC−1

xxx

}
. (30)

This PDF depends algebraically on x, i.e., x and x∗, but is
interpreted as the joint PDF of xr and xi, and can be used for
proper or improper x. In this work we call a complex vector x
following this distribution generalized complex Gaussian. The
simplification that occurs when C̃xx = 0 is obvious and leads
to the PDF of a complex proper Gaussian random vector x:

p(x) =
1

πn detCxx
exp

{
−xHC−1

xxx
}
. (31)

III. CWCU LMMSE ESTIMATION

We assume a vector parameter x ∈ Cn is to be estimated
based on a measurement vector y ∈ Cm. In the following we
first derive the CWCU LMMSE estimator for jointly complex
proper Gaussian x and y, while no further assumptions on
the measurement model are made. Subsequently, we briefly
recapitulate the results from [9], where the CWCU LMMSE
estimator has been derived for different linear model assump-
tions.

For jointly complex proper Gaussian x and y, the optimum
MMSE estimator is linear (or actually affine). In light of this
we also constrain the CWCU estimator to be affine, such that

x̂ = Ey + b, E ∈ Cn×m,b ∈ Cn. (32)

Note that in LMMSE estimation no assumptions on the spe-
cific form of the joint PDF p(x,y) have to be made. However,
the situation is different in CWCU LMMSE estimation. Let
us consider the ith component of the estimator

x̂i = eHi y + bi, (33)

where eHi denotes the ith row of the estimator matrix E. The
conditional mean of x̂i can be written as

Ey|xi
[x̂i|xi] = eHi Ey|xi

[y|xi] + bi. (34)

A closer inspection of (34) reveals that Ey|xi
[x̂i|xi] = xi

can be fulfilled for all possible xi if the conditional mean
Ey|xi

[y|xi] is a linear (or actually affine) function of xi, which
is e.g. the case for jointly complex proper Gaussian x and y.

A. CWCU LMMSE Estimation under the Jointly Gaussian
Assumption

For proper and jointly Gaussian x and y the conditional
mean Ey|xi

[y|xi] is given by

Ey|xi
[y|xi] = Ey[y] + (σ2

xi
)−1Cyxi(xi − Exi [xi]), (35)

where Cyxi = Ey,xi [(y−Ey[y])(xi−Exi [xi])
H ], and σ2

xi
is

the variance of xi. Ey|xi
[x̂i|xi] = xi is fulfilled if

eHi Cyxi
= σ2

xi
(36)

Exi
[xi]− eHi Ey[y] = bi. (37)

Inserting (33), (36) and (37) in the BMSE cost function
Ey,x[|x̂i − xi|2] immediately leads to the constrained opti-
mization problem

eCL,i = arg min
ei

(
eHi Cyyei − σ2

xi

)
s.t. eHi Cyxi

= σ2
xi
,

(38)
where ”CL” shall stand for CWCU LMMSE. The solution can
be found with the Lagrange multiplier method and is given by

eHCL,i =
σ2
xi

CxiyC
−1
yyCyxi

CxiyC
−1
yy . (39)

Using ECL = [eCL,1, eCL,2, . . . , eCL,n]H together with (37) and
(39) immediately leads us to the first part of the

Result 1. If x ∈ Cn and y ∈ Cm are jointly complex proper
Gaussian then the CWCU LMMSE estimator minimizing the
BMSEs Ey,x[|x̂i − xi|2] under the constraints Ey|xi

[x̂i|xi] =
xi for i = 1, 2, · · · , n is given by

x̂CL = Ex[x] + ECL(y − Ey[y]), (40)

with
ECL = DCxyC

−1
yy , (41)

where the elements of the real diagonal matrix D are

[D]i,i =
σ2
xi

CxiyC
−1
yyCyxi

. (42)
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The mean of the error e = x − x̂CL (in the Bayesian sense)
is zero, and the error covariance matrix Cee,CL which is also
the minimum BMSE matrix Mx̂CL

is

Cee,CL = Mx̂CL
= Cxx −AD−DA + DAD, (43)

with A = CxyC
−1
yyCyx. The minimum BMSEs are

BMSE(x̂CL,i) = [Mx̂CL
]i,i = MSE(x̂CL,i|xi) =

var(x̂CL,i|xi) and are given by

var(x̂CL,i|xi) = Ex̂CL,i|xi

[
|x̂CL,i − Ex̂CL,i|xi

[x̂CL,i|xi]|2|xi
]

= eHCL,iCyy|xi
eCL,i (44)

=

(
σ2
xi

)2
CxiyC

−1
yyCyxi

− σ2
xi

(45)

with Cyy|xi
= Ey|xi

[(y−Ey|xi
[y|xi])(y−Ey|xi

[y|xi])H |xi].

The part on the error performance can simply be proved
by inserting in the definitions of e, Cee, and var(x̂CL,i|xi),
respectively. The conditional variance and the conditional
MSE correspond since the conditional bias is zero. Further-
more, the Bayesian MSE and the conditional MSE correspond
since the conditional MSE is independent of the parameter
value xi. From (41) it can be seen that the CWCU LMMSE
estimator matrix can be derived as the product of the diagonal
matrix D with the LMMSE estimator matrix EL = CxyC

−1
yy .

Furthermore, we have Ex̂L,i|xi
[x̂L,i|xi] = [D]−1

i,i xi + (1 −
[D]−1

i,i )Exi [xi] for the LMMSE estimator. D can also be
written as

D = diag{Cxx} (diag{A})−1
. (46)

B. CWCU LMMSE Estimation under Linear Model Assump-
tions

For completeness, the findings in [9] for CWCU LMMSE
estimation under linear model assumptions will be stated in
the following. Let x and y be connected via the linear model
(17). Furthermore, let hi ∈ Cm be the ith column of H, H̄i ∈
Cm×(n−1) the matrix resulting from H by deleting hi, xi be
the ith element of x, and x̄i ∈ C(n−1) the vector resulting
from x after deleting xi. Then we can write

y = hixi + H̄ix̄i + n, (47)

and (33) becomes

x̂i = eHi (hixi + H̄ix̄i + n) + bi. (48)

The conditional mean of x̂i therefore is

Ey|xi
[x̂i|xi] = eHi hixi + eHi H̄iEx̄i|xi

[x̄i|xi] + bi. (49)

From (49) we can derive conditions that guarantee that the
CWCU constraints (4) are fulfilled. There are at least the
following possibilities:

1) (4) can be fulfilled for all possible xi if the condi-
tional mean Ex̄i|xi

[x̄i|xi] is a linear function of xi. For
complex proper Gaussian x this condition holds (for all
i = 1, 2, ..., n).

2) (4) can be fulfilled for all possible xi (and all i =
1, 2, ..., n) if Ex̄i|xi

[x̄i|xi] = Ex̄i
[x̄i] for all possible xi

(and all i = 1, 2, ..., n), which is true if the elements xi
of x are mutually independent.

3) (4) is fulfilled for all possible xi (and all i = 1, 2, ..., n)
if eHi hi = 1 and eHi H̄i = 0T for i = 1, 2, · · · , n, and if
we set bi = 0. These constraints and settings correspond
to the ones of the BLUE.

We start with the first case, and recapitulate from [9]:

Result 2. If the observed data y follow the linear model in
(17), where y ∈ Cm is the data vector, H ∈ Cm×n is a
known observation matrix, x ∈ Cn is a parameter vector
with prior complex proper Gaussian PDF CN (Ex[x],Cxx),
and n ∈ Cm is a zero mean noise vector with covariance
matrix Cnn and independent of x (the PDF of n is otherwise
arbitrary), then the CWCU LMMSE estimator minimizing the
BMSEs Ey,x[|x̂i − xi|2] under the constraints Ey|xi

[x̂i|xi] =
xi for i = 1, 2, · · · , n is given by (40) with

ECL = DCxxH
H(HCxxH

H + Cnn)−1, (50)

where the elements of the real diagonal matrix D are

[D]i,i =
σ2
xi

CxixH
H(HCxxHH + Cnn)−1HCxxi

. (51)

Note that in Result 2 the requirements on x and y are
weaker than in Result 1, since x and y need not to be jointly
Gaussian. The PDF of n can in fact be arbitrary, the noise
vector only has to be independent from x. For the second
case from above we recapitulate from [9]:

Result 3. If the observed data y follow the linear model in
(17), where y ∈ Cm is the data vector, H ∈ Cm×n is a known
observation matrix, x ∈ Cn is a parameter vector with mean
Ex[x], mutually independent elements and covariance matrix
Cxx = diag{σ2

x1
, σ2
x2
, · · · , σ2

xn
}, n ∈ Cm is a zero mean

noise vector with covariance matrix Cnn and independent of x
(the PDF of n is otherwise arbitrary), then the CWCU LMMSE
estimator minimizing the Bayesian MSEs Ey,x[|x̂i − xi|2]
under the constraints Ey|xi

[x̂i|xi] = xi for i = 1, 2, · · · , n is
given by (40) and (50), where the elements of the real diagonal
matrix D are

[D]i,i =
1

σ2
xi
hHi (HCxxHH + Cnn)−1hi

. (52)

The CWCU LMMSE estimator will in general not commute
over linear transformations, an exception is discussed in [8].

IV. CWCU WLMMSE ESTIMATION UNDER JOINTLY
GAUSSIAN ASSUMPTIONS

In the following we will derive the best widely linear (or
actually affine) estimator in a BMSE sense, which fulfills
the CWCU constraints in (4). We will do so by minimizing
the BMSE cost function under certain constraints. Again as
in the previous section we derive the estimator under differ-
ent model assumptions. Practical relevant model assumptions
which allow to derive a CWCU WLMMSE estimator that in
general outperforms the BWLUE are listed in Section I. In the
following, for every list entry (a) to (f) the according CWCU
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WLMMSE estimator will be derived, yielding Result 4 to
Result 9.

We begin with the jointly Gaussian assumptions for y and
x. We assume the widely linear estimator for xi to be of the
form

x̂i = eHi y + fHi y∗ + bi, for i = 1, 2, ..., n. (53)

Eq. (53) can also be written as

x̂i = wH
i y + bi, for i = 1, 2, ..., n, (54)

where we used
wH
i =

[
eHi fHi

]
. (55)

The conditional mean of the estimator in (54) follows to

Ey|xi
[x̂i|xi] = wH

i Ey|xi
[y|xi] + bi. (56)

We first assume that y and x are generalized jointly Gaussian.
Consequently, Ey|xi

[y|xi] is linear in xi, namely

Ey|xi
[y|xi] = Ey[y] + Cyxi

C−1
xixi

(xi − Exi [xi]). (57)

This leads to

Ey|xi
[x̂i|xi] =wH

i

(
Ey[y] + Cyxi

C−1
xixi

(xi − Exi
[xi])

)
+ bi.

(58)

By setting (58) equal to xi =
[
1 0

]
xi we find that the

CWCU constraint Ey|xi
[x̂i|xi] = xi is fulfilled if

wH
i Cyxi

C−1
xixi

=
[
1 0

]
(59)

Exi
[xi]−wH

i Ey[y] = bi. (60)

These are the two conditions the widely linear estimator in
(54) has to fulfill in order to become a CWCU estimator. For
the derivation of the CWCU WLMMSE estimator we consider
the BMSE cost function which follows to

J =Ey,x[|x̂i − xi|2]

=Ey,x[|wH
i y + bi − xi|2]

=Ey,x[|wH
i (y − Ey[y])− (xi − Exi

[xi])|2]

=Ey,x[|wH
i (y − Ey[y])−

[
1 0

]
(xi − Exi [xi])|2]

=wH
i Cyywi −wH

i Cyxi

[
1
0

]
−

[
1 0

]
Cxiywi +

[
1 0

]
Cxixi

[
1
0

]
︸ ︷︷ ︸

σ2
xi

. (61)

This result can be simplified by using (59), leading to the final
optimization problem

wCWL,i = arg min
wi

(
wH
i Cyywi − σ2

xi

)
s.t. wH

i Cyxi
C−1
xixi

=
[
1 0

]
, (62)

where ”CWL” shall stand for CWCU WLMMSE. The solution
of this optimization problem is derived in appendix A where
we used the Lagrange multiplier method. The results of
appendix A are summarized in the first part of

Result 4. If x ∈ Cn is a complex valued parameter
vector and x and y ∈ Cm are generalized jointly Gaussian

then the CWCU WLMMSE estimator minimizing the BMSEs
Ey,x[|x̂i − xi|2] under the constraints Ey|xi

[x̂i|xi] = xi for
i = 1, 2, · · · , n is

x̂CWL = Ex[x] + WCWL(y − Ey[y]), (63)

with

WCWL =
[
wCWL,1 wCWL,2 · · · wCWL,n

]H
, (64)

where the rows of WCWL are given by

wH
CWL,i =

[
1 0

]
Cxixi

(
CxiyC

−1
yyCyxi

)−1
CxiyC

−1
yy .

(65)
The mean of the error e = x− x̂CWL (in the Bayesian sense)
is zero, and the error covariance matrix Cee,CWL, which is
also the minimum BMSE matrix Mx̂CWL

, is

Cee,CWL = Cxx −WCWLCyx

[
In×n

0n×n

]
−[

In×n 0n×n
]
CxyW

H
CWL +

WCWLCyyW
H
CWL. (66)

The minimum BMSEs are BMSE(x̂CWL,i) = [Mx̂CWL
]i,i =

MSE(x̂CWL,i|xi) = var(x̂CWL,i|xi) and are given by

var(x̂CWL,i|xi) = E[|x̂CWL,i − E[x̂CWL,i|xi]|2|xi]
= wH

CWL,iCyy|xi
wCWL,i. (67)

=
[
1 0

]
Cxixi

(CxiyC
−1
yyCyxi

)−1Cxixi

[
1
0

]
− σ2

xi
. (68)

The part on the error performance can simply be proved
by inserting in the definition of e and Cee, respectively. The
derivation of the conditional variance can be found in appendix
B.

The CWCU WLMMSE estimator matrix WCWL from
Result 4 can be derived from the WLMMSE estimator matrix
EWL = CxyC

−1
yy according to

WCWL =
[
D1 D2

]
EWL, (69)

where the elements of the two diagonal matrices D1 and D2

are given by

[D1]i,i =
[[

1 0
]
Cxixi

(
CxiyC

−1
yyCyxi

)−1
]

1,1
, (70)

[D2]i,i =
[[

1 0
]
Cxixi

(
CxiyC

−1
yyCyxi

)−1
]

1,2
. (71)

In the next step we assume x to be a real valued vector,
while y shall still be complex valued. In that case y and
x are no longer generalized jointly Gaussian since the joint
augmented covariance matrix is no longer invertible. Also
Cxixi

is not invertible, which was required in the derivation
of Result 4, since

Cxixi
=

[
σ2
xi

σ2
xi

σ2
xi

σ2
xi

]
. (72)

However, we now assume the real composite vector

yR =

[
Re{y}
Im{y}

]
∈ R2m, (73)
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and the real vector x to be jointly Gaussian. Hence, the
conditional mean vector EyR|xi

[yR|xi] is given by

EyR|xi
[yR|xi] = EyR [yR] + CyRxi

1

σ2
xi

(xi − Exi
[xi]). (74)

By multiplying (74) with T from the left we obtain an
expression for Ey|xi

[y|xi] according to

Ey|xi
[y|xi] = Ey[y] + Cyxi

[
1
0

]
1

σ2
xi

(xi − Exi
[xi]). (75)

With (75) the conditional mean of the estimator in (54)
becomes

Ey|xi
[x̂i|xi] =wH

i Ey|xi
[y|xi] + bi

=wH
i

(
Ey[y] + Cyxi

[
1
0

]
1

σ2
xi

(xi − Exi [xi])

)
+ bi. (76)

By setting (76) equal to xi we learn that the CWCU constraint
Ey|xi

[x̂i|xi] = xi is fulfilled if

wH
i Cyxi

[
1
0

]
1

σ2
xi

= 1 (77)

Exi
[xi]−wH

i Ey[y] = bi. (78)

Simplifying the BMSE cost function in (61) using the con-
straint in (77) leads to the optimization problem

wCWL,i = arg min
wi

(
wH
i Cyywi − σ2

xi

)
s.t. wH

i Cyxi

[
1
0

]
1

σ2
xi

= 1. (79)

The derivation of this estimator can be found in appendix C,
the results are summarized in the first part of

Result 5. If x ∈ Rn is a real valued parameter vector
and x and yR ∈ C2m are jointly Gaussian then the CWCU
WLMMSE estimator minimizing the BMSEs Ey,x[|x̂i − xi|2]
under the constraints Ey|xi

[x̂i|xi] = xi for i = 1, 2, · · · , n is
given by (63) where the rows of WCWL are given by

wH
CWL,i =

σ2
xi[

1 0
]
CxiyC

−1
yyCyxi

[
1
0

] [1 0
]
CxiyC

−1
yy .

(80)
The minimum BMSEs are BMSE(x̂CWL,i) = [Mx̂CWL

]i,i =
MSE(x̂CWL,i|xi) = var(x̂CWL,i|xi) and are given by

var(x̂CWL,i|xi) =wH
i Cyy|xi

wi

=

(
σ2
xi

)2
[
1 0

]
CxiyC

−1
yyCyxi

[
1
0

] − σ2
xi
. (81)

The derivation of the conditional variances can be found
in appendix D. An alternative representation of (80) can be
obtained by utilizing

[
1 0

]
Cxiy = Cxiy, yielding

wH
CWL,i =

σ2
xi

CxiyC
−1
yyCyxi

CxiyC
−1
yy . (82)

The CWCU WLMMSE estimator matrix WCWL from Result
5 can be derived from the WLMMSE estimator matrix EWL =
CxyC

−1
yy according to

ECWL = D
[
In×n 0n×n

]
EWL, (83)

where the elements of the diagonal matrix D are given by

[D]i,i =
σ2
xi[

1 0
]
CxiyC

−1
yyCyxi

[
1
0

] . (84)

Note that this estimator always yields real values since
FCWL = E∗CWL or WCWL =

[
ECWL FCWL

]
=[

ECWL E∗CWL

]
.

V. CWCU WLMMSE ESTIMATION UNDER LINEAR
MODEL ASSUMPTIONS

In the following it will be seen that some of the prerequisites
of Result 4 and 5 can be relaxed when incorporating details of
the data model into the derivation of the estimator. From now
on we limit our considerations to the linear model in (17).
Statistical assumptions on x and n will vary in the following.

For the linear model the augmented covariance matrices
required in (65), (66), (80) and (81) become

Cxiy = CxixH
H (85)

Cyxi
= HCxxi

(86)

Cyy = HCxxH
H + Cnn (87)

Cxy = CxxH
H . (88)

If the assumptions made on the linear model above hold and if
x and n are both generalized complex Gaussian, then they are
generalized jointly Gaussian. Furthermore, since [xT ,yT ]T is
a linear transformation of [xT ,nT ]T , x and y are generalized
jointly Gaussian, too. We could therefore simply insert (85)-
(88) into the equations given in Result 4. However, the
jointly Gaussian assumption for x and n can significantly be
relaxed. This can be shown by incorporating the linear model
assumption already earlier in the derivation of the estimator.
With the notation

Hi =

[
hi 0
0 h∗i

]
∈ C2m×2, H̄i =

[
H̄i 0
0 H̄∗i

]
∈ C2m×(2n−2)

(89)
the augmented form of (47) follows to

y = Hixi + H̄ix̄i + n. (90)

Incorporating (90) into the conditional mean of the estimator
Ey|xi

[x̂i|xi] yields

Ey|xi
[x̂i|xi] =Ey|xi

[wH
i y + bi|xi]

=En,x̄i|xi
[wH

i (Hixi + H̄ix̄i + n) + bi|xi]
=wH

i (Hixi + H̄iEx̄i|xi
[x̄i|xi]) + bi. (91)

From (91) we can derive conditions that guarantee that the
CWCU constraints (4) are fulfilled. There are at least the
following possibilities:

1) (4) can be fulfilled for all possible xi (and all i =
1, 2, ..., n) if x is generalized complex Gaussian (the
reasoning follows immediately).
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2) (4) can be fulfilled for all possible xi (and all i =
1, 2, ..., n) if Ex̄i|xi

[x̄i|xi] = Ex̄i [x̄i] for all possible xi
(and all i = 1, 2, ..., n), which is true if the elements xi
of x are mutually independent.

3) (4) is fulfilled for all possible xi (and all i = 1, 2, ..., n) if
wH
i Hi =

[
1 0

]
and wH

i H̄i = 0T for i = 1, 2, · · · , n,
and if we set bi = 0. These constraints and settings
correspond to the ones of the BWLUE [10].

A. Correlated Gaussian Parameters

We start with the first case from above, assume a generalized
complex Gaussian parameter vector x, and begin the derivation
of the ith component x̂i of the estimator. Because of the
Gaussian assumption we have

Ey|xi
[x̂i|xi] =wH

i

(
Hixi + H̄i

(
Ex̄i

[x̄i]+

Cx̄ixi
C−1
xixi

(xi − Exi
[xi])

))
+ bi. (92)

By setting (92) equal to xi =
[
1 0

]
xi one can see that the

CWCU constraint Ey|xi
[x̂i|xi] = xi is fulfilled if

wH
i Hi + wH

i H̄iCx̄ixi
C−1
xixi

=
[
1 0

]
, (93)

bi = −wH
i H̄i

(
Ex̄[x̄i]−Cx̄ixi

C−1
xixi

Exi [xi])
)
. (94)

After some algebraic manipulations (93) and (94) can com-
pactly be written as

wH
i HCxxi

C−1
xixi

=
[
1 0

]
, (95)

bi = Exi
[xi]−wH

i Ey[y]. (96)

Eq. (95) could also have been derived from (59) by assuming
an underlying linear model. However, the approach in this
section shows that the noise need not to be Gaussian. Inserting
into the BMSE cost function leads to the optimization problem

wCWL,i = arg min
wi

(
wH
i Cyywi − σ2

xi

)
s.t. wH

i HCxxi
C−1
xixi

=
[
1 0

]
. (97)

The solution to this constrained optimization problem can be
found using the Lagrange multiplier method and is given in

Result 6. If the observed data y follow the linear model
in (17), where y ∈ Cm is the data vector, H ∈ Cm×n
is a known observation matrix, x ∈ Cn is a generalized
complex Gaussian parameter vector with mean vector Ex[x]
and augmented covariance matrix Cxx, and n ∈ Cm is a zero
mean noise vector with augmented covariance matrix Cnn

and independent of x (the PDF of n is otherwise arbitrary),
then the CWCU WLMMSE estimator minimizing the BMSEs
Ey,x[|x̂i − xi|2] under the constraints Ey|xi

[x̂i|xi] = xi for
i = 1, 2, · · · , n is given by (63)-(65) with (85)-(88) inserted
for the augmented covariance matrices.

Equivalent to Result 4, Result 6 cannot be applied if x is
real valued since then Cxixi

is not invertible. By following
similar steps as in Section IV one can show that for real

valued Gaussian parameter vectors the following optimization
problem occurs:

wCWL,i = arg min
wi

(
wH
i Cyywi − σ2

xi

)
s.t. wH

i HCxxi

[
1
0

]
1

σ2
xi

= 1. (98)

The solution is given in

Result 7. If the observed data y follow the linear model
in (17), where y ∈ Cm is the data vector, H ∈ Cm×n
is a known observation matrix, x ∈ Rn is a real valued
Gaussian parameter vector with prior PDF N (Ex[x],Cxx),
and n ∈ Cm is a zero mean noise vector with augmented
covariance matrix Cnn and independent of x (the PDF of n
is otherwise arbitrary), then the CWCU WLMMSE estimator
minimizing the BMSEs Ey,x[|x̂i − xi|2] under the constraints
Ey|xi

[x̂i|xi] = xi for i = 1, 2, · · · , n is given by (63), (64)
and (80) with (85)-(88) inserted for the augmented covariance
matrices.

B. Mutually Independent Parameters

For mutually independent parameters it is possible to further
relax the prerequisites on x. In this case (91) becomes

Ey|xi
[x̂i|xi] = wH

i Hixi + wH
i H̄iEx̄i

[x̄i] + bi, (99)

since Ex̄i|xi
[x̄i|xi] is no longer dependent on xi. Let x be

complex. By setting (99) equal to xi =
[
1 0

]
xi we see that

the CWCU constraint Ey|xi
[x̂i|xi] = xi is fulfilled if

wH
i Hi =

[
1 0

]
, (100)

bi = −wH
i H̄iEx̄i

[x̄i] = Exi
[xi]−wH

i Ey[y]. (101)

Eq. (100) could also have been derived from (93) by assuming
the elements of x to be mutually independent. However, the
approach in this section shows that no further assumptions
(like the Gaussian assumption) on the PDF of x have to
be made in the case of mutually independent parameters.
Inserting in the BMSE cost function and simplifying leads
to the optimization problem

wCWL,i = arg min
wi

(
wH
i Cyywi − σ2

xi

)
s.t. wH

i Hi =
[
1 0

]
. (102)

Solving this constrained optimization problem leads to

Result 8. If the observed data y follow the linear model in
(17), where y ∈ Cm is the data vector, H ∈ Cm×n is a
known observation matrix, x ∈ Cn is a complex parameter
vector with mean Ex[x] and mutually independent elements
such that Cxx = diag{σ2

x1
, σ2
x2
, · · · , σ2

xn
} and C̃xx =

diag{σ̃2
x1
, σ̃2
x2
, · · · , σ̃2

xn
}, n ∈ Cm is a zero mean noise vector

with augmented covariance matrix Cnn and independent of x
(the PDF of x and n are otherwise arbitrary). Then the CWCU
WLMMSE estimator minimizing the BMSEs Ey,x[|x̂i − xi|2]
under the constraints Ey|xi

[x̂i|xi] = xi for i = 1, 2, · · · , n is
given by (63) and (64), where the rows of WCWL are given
by

wH
CWL,i =

[
1 0

]
(HH

i C−1
yyHi)

−1HH
i C−1

yy , (103)
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and Cyy is defined in (87).

By applying Result 6, and using HCxxi
= HiCxixi

, which
holds for mutually independent parameters, we also arrive at
the same formulas as in Result 8, however, the prerequisites in
Result 8 are much more relaxed. We note that the constraint
wH
i Hi =

[
1 0

]
is equivalent to

fHi hi = 1, gHi h∗i = 0. (104)

We now again turn to the case that x is a real valued param-
eter vector. In that case we can further relax the constraints:
By using xi =

[
xi xi

]T
(which is true for real xi) in (99)

we immediately see that for the real case the CWCU constraint
Ey|xi

[x̂i|xi] = xi is fulfilled if

fHi hi + gHi h∗i = wH
i Hi

[
1
1

]
= 1, (105)

which is a softer requirement than wH
i Hi =

[
1 0

]
(compare

(105) with (104)). Inserting in the BMSE cost function and
simplifying leads to the optimization problem

wCWL,i = arg min
wi

(
wH
i Cyywi − σ2

xi

)
s.t. wH

i Hi

[
1
1

]
= 1. (106)

The CWCU WLMMSE estimator for the real parameter case
is the solution to this optimization problem and is given in

Result 9. If the observed data y follow the linear model in
(17), where y ∈ Cm is the data vector, H ∈ Cm×n is a
known observation matrix, x ∈ Rn is a real valued parameter
vector with mean Ex[x], mutually independent elements and
covariance matrix Cxx = diag{σ2

x1
, σ2
x2
, · · · , σ2

xn
}, n ∈ Cm

is a zero mean noise vector with augmented covariance matrix
Cnn and independent of x (the joint PDF of x and n is
otherwise arbitrary). Then the CWCU WLMMSE estimator
minimizing the BMSEs Ey,x[|x̂i − xi|2] under the constraints
Ey|xi

[x̂i|xi] = xi for i = 1, 2, · · · , n is given by (63) and
(64), where the rows of WCWL are given by

wH
CWL,i =

1[
1 1

]
HH
i C−1

yyHi

[
1
1

] [1 1
]
HH
i C−1

yy . (107)

By using the augmented vector hi =
[
hTi hHi

]T
, (107)

simplifies to

wH
CWL,i =

1

hHi C−1
yyhi

hHi C−1
yy . (108)

Let’s recall that the CWCU WLMMSE estimator from
Result 4 applied on the linear model leads to the same formulas
as in Result 6. However, the prerequisites in Result 4 and 6
differ. The same statement holds for Result 5 and 7, Result 6
and 8, and Result 7 and 9, respectively.

C. Separated Real and Imaginary Parts

Another way to estimate a complex parameter vector is to
rewrite the linear model y = Hx + n according to

y =
[
H iH

]︸ ︷︷ ︸
H′∈Cm×2n

[
Re{x}
Im{x}

]
︸ ︷︷ ︸
xR∈C2n

+n, (109)

and estimate the real and imaginary parts of the parameter
vector separately. With (109), the parameter vector is real
valued which enables us to use the CWCU WLMMSE esti-
mator for real valued parameter vectors. The estimated real
and imaginary parts can then be combined to a complex
estimator for the parameter vector x. It is to note that this
estimator is in general not a CWCU estimator for the complex
parameters xi, but it is a CWCU estimator for Re{xi} and
Im{xi}, since we forced E[R̂e{xi}|Re{xi}] = Re{xi} and
E[ ̂Im{xi}|Im{xi}] = Im{xi} for i = 1, 2, · · · , n. This is
why this estimator will be denoted as part-wise conditionally
unbiased WLMMSE (PWCU WLMMSE) estimator. In general
this estimator features a lower BMSE compared to its CWCU
counterpart, since conditioning separately on the real and on
the imaginary parts are in general weaker constraints than
conditioning on the complex parameters. However, there exist
cases where CWCU and PWCU estimators feature the same
BMSE performance.

VI. EXAMPLE: WIDELY LINEAR ESTIMATION OF
IMPROPER DATA

For examples on the application of CWCU LMMSE esti-
mators for proper parameter vectors we refer the reader to [8]
and [9], where we investigated channel and data estimation
applications. Here we test the CWCU WLMMSE estimator,
and compare it with the BLUE, the LMMSE estimator, the
CWCU LMMSE estimator, the BWLUE, and the WLMMSE
estimator. We do this by estimating a complex constant and the
complex amplitude of a complex exponential in the presence
of noise. The signal model is y[k] = x1 + 1.5x2e

j6k + n[k]
for k = 0, 1, · · · , 5. Which can easily be brought to the form
of a linear model y = Hx + n. We assume the noise vector
n to be complex proper Gaussian n ∼ CN (0,Cnn) with

Cnn = diag{0.1, 0.06, 0.3, 0.2, 0.15, 0.1}. (110)

Furthermore, in our experiment we let the covariance matrices
of the real and imaginary parts of x and the cross-covariance
matrix be

CRe{x}Re{x} = diag{1, 0.6} (111)
CIm{x}Im{x} = k diag{1, 0.6} (112)

CRe{x}Im{x} = 02×2, (113)

where the scalar k in CIm{x}Im{x} can vary between 10−4 and
102. According to this setup the parameter vector x is improper
for k 6= 1 and proper for k = 1. We start with k = 10−4,
such that the parameter vector is close to real, and test all
the estimators listed in Table I. Then we increase k stepwise,
such that the imaginary part of x becomes more and more
significant, and repeat the estimation procedures accordingly.
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TABLE I
ESTIMATORS USED FOR THE PROBLEM DESCRIBED IN SECTION VI

Estimator Section Equation
BLUE II-B (20)

LMMSE II-B (15)

CWCU LMMSE III Result 3

BWLUE II-B (21)

WLMMSE II-B (16)

CWCU WLMMSE V-B Result 8

CWCU WLMMSE for real
parameter vectors V-B Result 9

PWCU WLMMSE V-C Result 9
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Fig. 2. BMSE values plotted over the scaling factor k which defines the
variances of the imaginary parts. The variances of the real parts have been
kept constant.

The result is a BMSE curve for each estimator in dependence
of k. With this setup we can observe how the estimators
perform for highly improper and also proper data within the
scope of this example. Note that we also test the CWCU
WLMMSE estimator for real parameter vectors. Clearly this
estimator only perfectly fulfills the CWCU constraints once
the parameter vector is in fact real. However, for k = 10−4

it makes sense to apply this estimator since in that case the
imaginary parts of the parameters are negligible compared to
the real parts. Of course for increasing k the application of
this estimator does not make sense.

Fig. 2 shows the resulting BMSE curves plotted over the
scaling factor k. Clearly, the WLMMSE estimator features
the best BMSE performance for all k since this estimator
minimizes the BMSE cost function without any constraints.

The BLUE and the BWLUE show the worst performance.
They perform equal, which is clear since the BWLUE is only
able to outperform the BLUE in case of improper noise. Both
estimators show the same performance for all k, because they
do not incorporate statistical knowledge on the parameters.

Especially for small k, which corresponds to highly im-
proper data, the LMMSE estimator’s performance is far below
the one of the WLMMSE estimator, while for k = 1 (the
proper case) they clearly perform equal. This impressively
shows that the LMMSE estimator is not able to exploit infor-
mation about the improperness of x. The CWCU WLMMSE
estimator derived in this work also significantly outperforms
the LMMSE estimator for small values of k, and it is also in
front for large k > 10. For k = 10−4, where we approximately
have a real valued parameter vector, the CWCU WLMMSE
estimator for real parameter vectors comes quite close to the
WLMMSE estimator. However, it is interesting to note that the
CWCU WLMMSE estimator for complex parameter vectors
does not converge to the CWCU WLMMSE estimator for
real parameter vectors for k → −∞. Consequently, once we
know from the application that the parameter vector is real
we shall definitely apply the CWCU WLMMSE estimator for
real parameter vectors. In this example it can also be seen that
the PWCU WLMMSE estimator particularly outperforms the
CWCU WLMMSE estimator for small k.

We already noted that for k = 1 (the proper case), the
LMMSE estimator and the WLMMSE estimator perform
equal, the same is true for the CWCU LMMSE and the CWCU
WLMMSE estimator.

For k � 1, the variances of the imaginary parts of the
parameters are way bigger than the noise variances. Hence,
the prior knowledge about CIm{x}Im{x} become less impor-
tant. What’s left is the prior knowledge about CRe{x}Re{x}.
Linear estimators are not able to incorporate this particu-
lar knowledge, and they all converge towards the BLUE’s
performance for large k. The WLMMSE estimator and the
CWCU WLMMSE estimator still keep a little performance
gain compared to the linear estimators due to the incorporation
of the prior knowledge about the improperness of x.

To conclude this example we can state that the CWCU
WLMMSE estimator significantly outperforms its globally
unbiased counterparts BLUE and BWLUE, and compared to
the WLMMSE estimator the CWCU WLMMSE estimator fea-
tures the favorable property of component-wise conditionally
unbiasedness.

VII. ESTIMATOR COMPARISON

In standard literature [1] the BLUE is treated as a classical
linear estimator x̂ = Ey, which is derived by minimizing the
estimators variance subject to the unbiased constraint EH = I:

min var(x̂) s.t. EH = I. (114)

It can be shown that this estimator can also be derived in the
Bayesian framework by minimizing the BMSE cost function
Ey,x[|x̂i − xi|2] subject to the (global) unbiased constraint
EH = I, such that the BLUE can also be interpreted as
a Bayesian estimator. Similar arguments also hold for the
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TABLE II
LINEAR AND WIDELY LINEAR ESTIMATORS AND THEIR CONSTRAINTS

Estimator Constraints
BLUE EH = I, F = 0

LMMSE F = 0

CWCU LMMSE diag{EH} = 1, F = 0

BWLUE EH = I, FH∗ = 0

WLMMSE -

CWCU WLMMSE diag{EH} = 1,
diag{FH∗} = 0

CWCU WLMMSE for
real parameter vectors

diag{EH}+ diag{FH∗} = 1

BWLUE. Hence, every estimator regarded in this work can
be derived by minimizing the BMSE cost function subject to
particular constraints (except the WLMMSE estimator which
minimizes the BMSE cost function without any constraint but
the widely linear restriction). In the following we concentrate
on the linear model case with a parameter vector having
mutually independent parameters, furthermore we assume
the parameter vector and the measurement vector to have
zero mean. These assumptions are made since then also the
constraints for the CWCU estimators take on quite simple
forms (while the constraints on BLUE, BWLUE, LMMSE
and WLMMSE estimator do not change by making particular
assumptions on the PDF of x). Let the general widely linear
estimator for this setup be of the form

x̂ = Wy =
[
E F

]
y = Ey + Fy∗. (115)

Table II lists all the estimators regarded in this work together
with the constraints that have to be fulfilled for this particular
setup when minimizing the BMSE cost function. The estimator
with the most stringent constraint, which is the BLUE, will
in general perform worst in a BMSE sense. On the other
hand, the BLUE produces unbiased estimates in the classical
sense. The LMMSE estimator and the WLMMSE estimator,
while performing better in a BMSE sense than the BLUE and
the BWLUE, respectively, are conditionally biased, leading to
effects demonstrated in Fig. 1. The CWCU estimators derived
in this paper prevent this property, and in contrast to the BLUE
and the BWLUE they are in general able to incorporate prior
knowledge about the statistics of the parameter vector, which
can lead to a significant performance gain over these classical
estimators (c.f. Section VI).

VIII. CONCLUSION

In this paper we completed previous findings on CWCU
LMMSE estimation and derived an analytical solution in
dependence on the first and second order statistics for the case,
that the parameters and measurements are jointly Gaussian.
The main intent of the work, however, was the extension of
component-wise conditionally unbiased estimation to widely
linear estimators. We derived CWCU WLMMSE estimators
for a number of different preconditions, and started with
jointly Gaussian parameters and measurements. In the next

step we made linear model assumptions, investigated the cases
of jointly Gaussian and mutually independent parameters, and
showed that the jointly Gaussian assumption of the parameter
and measurement vectors can significantly be relaxed. In
particular, the PDF of the noise can be arbitrary, and in
case of mutually independent parameters their joint PDF can
also be of any form. Furthermore, for every regarded set of
preconditions we distinguished between improper complex and
real parameters, which lead to different analytical expressions
in each case.

APPENDIX A
DERIVATION OF THE CWCU WLMMSE ESTIMATOR

UNDER THE GENERALIZED JOINTLY GAUSSIAN
ASSUMPTION OF x AND y

In appendix A we solve the optimization problem given in
(62) using the Lagrange multiplier method. We start with the
Lagrangian cost function which is

J ′ = wH
i Cyywi−σ2

xi
+λH

(
C−1
xixi

Cxiywi −
[
1
0

])
. (116)

Using Wirtinger’s calculus [31] for complex derivatives, we
obtain

∂J ′

∂wi
= CT

yyw
∗
i + (λHC−1

xixi
Cxiy)T . (117)

By setting (117) equal to zero, wH
i can be derived as

wH
i = −λHC−1

xixi
CxiyC

−1
yy . (118)

This result reinserted into the constraint in (62) leads to an
expression for λ according to

λH = −
[
1 0

]
Cxixi

(
CxiyC

−1
yyCyxi

)−1
Cxixi

. (119)

Eq. (119) reinserted into (118) leads to the final solution of
the optimization problem in the form of

wH
CWL,i =

[
1 0

]
Cxixi

(
CxiyC

−1
yyCyxi

)−1
CxiyC

−1
yy .

(120)

APPENDIX B
DERIVATION OF THE CONDITIONAL PROPERTIES OF THE

CWCU WLMMSE ESTIMATOR

In appendix B the conditional variance of the estimator
proposed in Result 4 will be derived. For simplicity of the
formulas we will denote wH

CWL,i as wH
i and x̂CWL,i as x̂i,

respectively. We then have

var(x̂i|xi) =E
[
|x̂i − E[x̂i|xi]|2|xi

]
=E

[
|wH

i y + bi − xi|2|xi
]

=E
[
|wH

i (y − E[y])− (xi − E[xi])|2|xi
]
.

In the last step (60) has been used. Inserting (57) for E[y]
leads to

var(x̂i|xi) =E[|wH
i (y − E[y|xi])

+ wH
i Cyxi

C−1
xixi

(xi − E[xi])

− (xi − E[xi])|2|xi].
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Inserting (65) gives

var(x̂i|xi) =E[|wH
i (y − E[y|xi])

+
[
1 0

]
(xi − E[xi])− (xi − E[xi])|2|xi]

=E[|wH
i (y − E[y|xi])|2|xi]

=wH
i Cyy|xi

wi. (121)

Using

Cyy|xi
= Cyy −Cyxi

C−1
xixi

Cxiy (122)

(c.f. [12]), and again (65) leads to

var(x̂i|xi) =
[
1 0

]
Cxixi

(CxiyC
−1
yyCyxi

)−1Cxixi

[
1
0

]
−
[
1 0

]
Cxixi

[
1
0

]
=
[
1 0

]
Cxixi

(CxiyC
−1
yyCyxi

)−1Cxixi

[
1
0

]
− σ2

xi
. (123)

APPENDIX C
DERIVATION OF THE CWCU WLMMSE ESTIMATOR

UNDER THE JOINTLY GAUSSIAN ASSUMPTION FOR REAL x

In appendix C we solve the optimization problem given in
(79) using the Lagrange multiplier method. We start with the
Lagrangian cost function which is

J ′ = wH
i Cyywi − σ2

xi
+ λ

(
1

σ2
xi

[
1 0

]
Cxiywi − 1

)
.

(124)
Using Wirtinger’s calculus for complex derivatives, the deriva-
tion of (124) follows to

∂J ′

∂wi
= CT

yyw
∗
i + (λ

1

σ2
xi

[
1 0

]
Cxiy)T . (125)

By setting (125) equal to zero, wH
i can be derived as

wH
i = −λ 1

σ2
xi

[
1 0

]
CxiyC

−1
yy . (126)

This result reinserted into the constraint in (79) leads to an
expression for λ according to

λ = −
(σ2
xi

)2[
1 0

]
CxiyC

−1
yyCyxi

[
1
0

] . (127)

Eq. (127) reinserted into (126) leads to the final solution of
the optimization problem in the form of

wH
CWL,i =

σ2
xi[

1 0
]
CxiyC

−1
yyCyxi

[
1
0

] [1 0
]
CxiyC

−1
yy .

(128)
Compounding wH

CWL,i to an estimator matrix immediately
leads to Result 5.

APPENDIX D
DERIVATION OF THE CONDITIONAL PROPERTIES OF THE

CWCU WLMMSE ESTIMATOR FOR REAL VALUED
PARAMETER VECTORS

In this appendix the conditional variance of the estimator
proposed in Result 5 is investigated. For simplicity of the
formulas we will again denote wH

CWL,i as wH
i and x̂CWL,i

as x̂i, respectively. The first steps correspond to the ones of
appendix B, such that after utilizing (75) and (80) we obtain

var(x̂i|xi) = wH
i Cyy|xi

wi. (129)

To find an expression for Cyy|xi
we begin with

CyRyR|xi
= CyRyR −CyRxi

1

σ2
xi

CxiyR . (130)

Multiplying (130) with T from the left and with TH from the
right and utilizing (24) yields

Cyy|xi
= Cyy −Cyxi

1

σ2
xi

Cxiy. (131)

Replacing Cyxi
with Cyxi

[ 1
0 ] finally leads to

Cyy|xi
= Cyy −Cyxi

[
1
0

]
1

σ2
xi

[
1 0

]
Cxiy. (132)

Inserting (132) into (129) results in

var(x̂i|xi) =wH
i Cyy|xi

wi

=wH
i Cyywi −wH

i Cyxi

[
1
0

]
1

σ2
xi

[
1 0

]
Cxiywi

=

(
σ2
xi

)2
[
1 0

]
CxiyC

−1
yyCyxi

[
1
0

] − σ2
xi
, (133)

where in the last step, (80) has been incorporated.
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