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Distributed Average Consensus

r
r; € R: data at agent i

r N: number of agents

ro E: number of edges

r3
(4,7): the edge connecting

s Is . 2
agents ¢ and j

s
N;: the set of neighboring

agents of agent i

@ Goal: using only local computation and communication to reach the

consensus at N
1
Tavg = 7 E T3
N
=1
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Distributed Average Consensus (cont.)

@ Motivation and Applications
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distributed agreement and synchronization
distributed coordination of mobile autonomous agents
distributed data fusion in sensor networks

load balancing for parallel computers
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Distributed Average Consensus (cont.)

@ Motivation and Applications

distributed agreement and synchronization
o distributed coordination of mobile autonomous agents

o distributed data fusion in sensor networks

load balancing for parallel computers

@ Chanllenges

e no fusion center in large scale networks = distributed algorithms
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Distributed Average Consensus (cont.)

@ Motivation and Applications

distributed agreement and synchronization
o distributed coordination of mobile autonomous agents

o distributed data fusion in sensor networks

load balancing for parallel computers

@ Chanllenges

e no fusion center in large scale networks = distributed algorithms

o limited channel capacity, agent power, etc. = quantization

= Quantized Consensus [Kashyap'2007]
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Existing Approaches

k= ok ok Lok

Notation: ahsaksosak]and 20 = [ry;ro;- e

o Classical approach: z**1 = Wa*
e without quantization: ¥ — Zavg When W is doubly stochastic
[Elsner’1990, Xiao'2004, Jakovetic'2010, Nedi¢'2009]
o dithered quantization: E[z¥] — avg [Aysal2008]
o deterministic quantization: z¥ converges to a consensus in finite time with an

error from xa. or cycles in a small neighborhood around g
[Nedi¢’2009, Chamie’2014]

k k
k+1 _  k+1 _ Tit®; s
i =z = —5-* for a randomly selected (i, j)

o Similar results [Tsitsiklis'1984, Ashyap’2007, Kar'2010, Carli’2010]

@ Gossip based approach: x
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Existing Approaches (cont.)

Fact: T,y = argmin, 1 vazl(m —r;)?

Equivalent ADMM formulation for connected networks:

o 1 5
minimize —\Tr; —T;
{wi bl } Z (@i =)

subject to  x; = 25, x; = 25, V(4,7)
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Existing Approaches (cont.)

ADMM based Approach: Distributed Consensus ADMM (DC-ADMM)
[Schizas'2008,Zhu’2009]

1
k+1_ = | E k_ ok )
x; 15 20| <P|M|$Z +pj€N‘ T — +rz>7

k+1 k k41 k41
a;t :ai"'P(M[i%Jr - ijJr)'

JEN;

@ p: any fixed positive number

e without quantization: x¥ — x,yg [Schizas'2008,zhu'2009]; linear rate under mild
conditions [Shi'2014]

o dithered quantization: E[zF] — 2ayg [Zhu'2009]

@ deterministic quantization: no results and a hard problem
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Existing Approaches (cont.)

With quantization, existing approaches
@ do not converge to a consensus in finite time, or

@ converge to a consensus in polynomial time with an error increasing in the
range of agents data, quantization resolution and the number of agents

Big Problem: large data range and network size in today's applications, e.g.,
large scale networks or big data settings

DC-ADMM: resilient to noise; fast convergence (linear rate)
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Existing Approaches (cont.)

With quantization, existing approaches
@ do not converge to a consensus in finite time, or

@ converge to a consensus in polynomial time with an error increasing in the
range of agents data, quantization resolution and the number of agents

Big Problem: large data range and network size in today's applications, e.g.,
large scale networks or big data settings

DC-ADMM: resilient to noise; fast convergence (linear rate)

Our goal: Can we use the ADMM to achieve better results?

GlobalSIP 2015 Quantized Consensus 7/



Modified DC-ADMM Algorithm

Rounding Quantization

1 1
Qa(y) =tA, if (t—2>A§y< (t+2)A,teZ

Deterministically Quantized DC-ADMM (DQ-DC-ADMM)

1
k+1 _ ok k ok )
R WG YA (pwl'xmd} +Pj§[v TjlQa) — % Tt ”)»

k+1 _ k k+1 k+1
o =ag+ p<Ni|‘”i[Qd] - z/:v mj[@d)'
JEN;
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Convergence Results

If @ = [af;a9;- -+ ;a%] lies in the column space of the Laplacian matrix of the
graph (e.g., a? = 0), then the DQ-DC-ADMM has

o Convergence: the sequence (acde],a’“) converges to a finite value
(1$E‘Qd],a*) where 1 is a N-dimensional vector with all entries being 1.

o Consensus error: a tight upper bound for the consensus error is given by

. 1 2E
|, — Tave| < (2 + PN> A.

o Number of iterations: DQ-DC-ADMM converges within[log,_ s 2] + 3
iterations, where § > 0 depends on p and the network topology and Q is a
polynomial fraction depending on p, A, agents’ data, and the network
topology.
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ADMM Based Algorithm for Quantized Consensus

@ Note: the DQ-DC-ADMM does not converge to global optima; a good
starting point usually helps
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ADMM Based Algorithm for Quantized Consensus

@ Note: the DQ-DC-ADMM does not converge to global optima; a good
starting point usually helps

@ Probability Quantizer

tA, with probability £ —t,

Qoly) = {(t +1)A, with probability t +1 — .

o PQDQ-DC-ADMM: First run the PQ-DC-ADMM to obtain good estimates;
then run the DQ-DC-ADMM to reach a consensus
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Simulation: Consensus Error
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@ Setting: A =1, r; ~unif[-N,N]; p=1
@ DQ-DC-ADMM: much smaller than the upper bound

o PQDQ-DC-ADMM: typically less than one A for all connected networks with
agents’ data of arbitrary magnitudes
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Simulations: Convergence time
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(a) fixing 22 =20 (b) fixing N =50
o Setting: A =1, r; ~unif[-N,N]; p=1
@ DQ-DC-ADMM: increases as the data range and graph density becomes larger

o PQDQ-DC-ADMM: converges almost immediately after the PQ-DC-ADMM stage
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Conclusion

DQ-DC-ADMM
o converges relatively fast (within [log, , ; Q] + 3 iterations)

@ consensus error does not depend on agents' data or the network size

PQDQ-DC-ADMM

@ consensus error is typically within one quantization resolution regardless of
network topology and agents’ data

@ need more iterations
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