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Abstract

We propose an adaptive tracking algorithm where the object is modelled as a continuously updated bag of
affine subspaces, with each subspace constructed from the object’s appearance over several consecutive frames.
In contrast to linear subspaces, affine subspaces explicitly model the origin of subspaces. Furthermore, instead
of using a brittle point-to-subspace distance during the search for the object in a new frame, we propose to
use a subspace-to-subspace distance by representing candidate image areas also as affine subspaces. Distances
between subspaces are then obtained by exploiting the non-Euclidean geometry of Grassmann manifolds.
Experiments on challenging videos (containing object occlusions, deformations, as well as variations in pose
and illumination) indicate that the proposed method achieves higher tracking accuracy than several recent
discriminative trackers.



1 Introduction

Object tracking is a core task in applications such as automated surveillance, traffic monitoring and human
behaviour analysis [27, 41]. Tracking algorithms need to be robust to intrinsic object variations (eg., shape
deformation and pose changes) and extrinsic variations (eg., camera motion, occlusion and illumination
changes) [41].

In general, tracking algorithms can be categorised into two main categories: (i) generative tracking [2, 30, 34],
and (ii) discriminative tracking [4, 19, 28]. Generative methods represent the object as a particular appearance
model and then focus on searching for the location that has the most similar appearance to the object model.
Discriminative approaches treat tracking as a binary classification task, where a discriminative classifier is
trained to explicitly separate the object from non-object areas such as the background. To achieve good
performance, discriminative methods in general require a larger training dataset than generative methods.

A promising approach for generative tracking is to model object appearance via subspaces [15, 25, 30, 39].
A common approach in such trackers is to apply eigen-decomposition on a set of object images, with the
resulting eigenvectors defining a linear subspace. These linear subspaces are able to capture perturbations
of object appearance due to variations in viewpoint, illumination, spatial transformation, and articulation.
However, there are two major shortcomings. First, a linear subspace does not model the mean of the image set
(ie., origin of the subspace) which can potentially hold useful discriminatory information; all linear subspaces
have a common origin. Second, subspace based trackers typically search for the object location by comparing
candidate image areas to the object model (linear subspace) using a brittle point-to-subspace distance [24, 33]
(also known as distance-from-feature-space [35]), which can be easily affected by drastic appearance changes
such as partial occlusions. For face recognition and clustering it has been shown that improved performance
can be achieved when subspace-to-subspace distances are used instead [5, 12].

To address the shortcomings of traditional subspace based trackers, in this work1 we propose a tracker with
the following four characteristics:

(i) Instead of linear subspaces, we propose to model object appearance using affine subspaces, thereby taking
into account the origin of each subspace.

(ii) Instead of using point-to-subspace distance, we propose to represent the candidate areas as affine
subspaces and use a subspace-to-subspace distance; this allows for more robust modelling of the candidate
areas and in effect increases the memory of the tracker.

(iii) To accurately measure distances between subspaces, we exploit the non-Euclidean geometry of Grassmann
manifolds [14, 29].

(iv) To take into account drastic appearance changes that are not well modelled by individual subspaces (such
as occlusions) [40], the tracked object is represented by a continuously updated bag of affine subspaces;
this is partly inspired by [4], where bags of object images are used.

To the best of our knowledge, this is the first time that appearance is modelled by affine subspaces for object
tracking. The proposed approach is somewhat related to adaptive subspace tracking [15, 30, 37]. In [15, 30] an
object is represented as a single low-dimensional linear subspace, which is constantly updated using recent
tracking results. In [37], an online subspace learning scheme employing Grassmann manifolds is used to update
the object model. In the above methods, only linear subspaces and point-to-subspace distances are considered.
In contrast, the proposed method uses affine subspaces and a more robust subspace-to-subspace distance.
Furthermore, instead of updating a single subspace, the proposed method keeps a bag of recent affine subspaces,
where old subspaces are replaced with new ones.

We continue the report as follows. An overview of related work is given in Section 2. Section 3 presents the
proposed tracking approach in detail. Comparative evaluations against several recent tracking methods are
reported in Section 4. The main findings and possible future directions are given in Section 5.

1This report is a thoroughly revised version of our earlier paper [32].
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2 Related Work

In this section, we first overview the evolution of subspace-based trackers. We then briefly describe two
popular generative trackers: the mean shift tracker [9] and the fragments-based tracker [2]. Finally, we
briefly cover two recent discriminative tracking methods: Multiple Instance Learning (MIL) tracker [4] and
Tracking-Learning-Detection (TLD) [19].

2.1 Subspace Based Trackers

As the main challenge in visual tracking is the difficulty in handling the appearance variability of a target object,
it is imperative for a robust tracking algorithm to model such appearance variations. This can be difficult to
accomplish when the object model is based on only a single image. Subspaces allow us to group images together
and provide a single representation as a compact appearance model [30]. Subspace-based tracking originated
with the work of Black and Jepson [7], where a subspace learning-based approach is proposed for tracking
rigid and articulated objects. This approach uses a view-based eigenbasis representation with parameterised
optical flow estimation. As the algorithm is based on iterative parameterised matching between the eigenspace
and candidate image regions, it might have a relatively high computational load [22]. It also uses a single
pre-trained subspace to provide the object appearance model across the entire video. As such, to achieve robust
visual tracking with this method, it is necessary to first collect a large set of training images covering the range
of possible appearance variations, which can be difficult to accomplish in practice.

Addressing the limitations of having a single representation for object appearance which is always
learned off-line before tracking begins, Skocaj and Leonardis [33] developed a weighted incremental Principal
Component Analysis (PCA) approach for sequentially updating the subspace. Although the method improves
tracking accuracy, it has the limitation of being computationally intensive due to an optimisation problem that
has to be computed iteratively. To address this issue, Li et al. [25] proposed an alternative incremental PCA-based
algorithm for subspace learning. In this approach, the PCA model updating is performed directly using the
previous eigenvectors and a new observation vector, thereby significantly decreasing the computational load of
the update process.

Ho et al. [15] proposed an adaptive tracker using a uniform L2-reconstruction error norm for subspace
estimation, allowing explicit control on the approximation quality of the subspace. Empirical results show
increases in tracking robustness and more swift reactions to environmental changes. However, as the method
represents objects as a point in a linear subspace computed using only recent tracking results, the tracker may
drift if large appearance changes occur [16].

Lim et al. [26] proposed a generalised tracking framework which constantly learns and updates a low
dimensional subspace representation of the object. The updates are done using several observations at a time
instead of a single observation. To estimate the object locations in consecutive frames, a sampling algorithm is
used with robust likelihood estimates. The likelihood for each observed image being generated from a subspace
is inversely proportional to the distance of that observation from the subspace. Ross et al. [30] improved the
tracking framework in [26] by adding a forgetting factor to focus more on recently acquired images and less on
earlier observations during the learning and update stages.

Hu et al. [16] presented an incremental log-Euclidean Riemannian subspace learning algorithm in which
covariance matrices of image features are mapped from a Riemannian manifold into a vector space, followed by
linear subspace analysis. A block based appearance model is used to capture both global and local spatial layout
information. Similar to traditional subspace based trackers, this method also uses a point-to-subspace distance.

2.2 Other Generative Trackers

Among algorithms that do not use subspaces, two popular generative trackers are the mean shift tracker [9] and
the fragments-based tracker [2]. The mean shift tracker models object appearance with colour histograms which
can be applied to track non-rigid objects. Both the object model and candidate image areas are represented by
colour pdfs, with the Bhattacharyya coefficient used as the similarity measure [18]. Tracking is accomplished
by finding the local maxima of the similarity function using gradient information provided by the mean
shift vector which always points toward the direction of maximum. While effective, the mean shift tracker is
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subject to several issues. First, the spatial information is lost, which precludes the application of more general
motion models [2, 38]. Second, the Bhattacharyya coefficient may not be discriminative enough for tracking
purposes [38]. Third, the method only maintains a single template to represent the object, leading to accuracy
degradation if an object moves rapidly or if a significant occlusion occurs.

The fragments-based tracker [2] aims to handle partial occlusions via a parts-based model. The object is
represented by multiple image fragments or patches. Spatial information is retained due to the use of spatial
relationships between patches. Each patch votes on the possible positions and scales of the object in the current
frame, by comparing its histogram with histograms of image patches in the frame. The tracking task is carried
out by combining the vote maps of multiple patches by minimising a robust statistic. However, the object model
is not updated and thereby it is not expected to handle tracking objects that exhibit significant appearance
changes [36, 4].

2.3 Discriminative Trackers

Two recent discriminative methods are the Multiple Instance Learning tracker (MILTrack) [4] and the
Tracking-Learning-Detection (TLD) approach [19]. In the MILTrack approach, instead of using a single positive
image patch to update the classifier, a set of positive image patches is maintained and used to update a multiple
instance learning classifier [10]. In multiple instance learning, training examples are presented in sets with
class labels provided for entire sets rather than individual samples. The use of sets of images allows the
MILTrack approach to achieve robustness to occlusions and other appearance changes. However, if the object
location detected by the current classifier is imprecise, it may lead to a noisy positive sample and consequently
a suboptimal classifier update. These noisy samples can accumulate and cause tracking drift or failure [42].

The TLD approach decomposes the tracking task into three separate tasks: tracking, learning and detection.
It regards tracking results as unlabelled and exploits their underlying structure using positive and negative
experts to select positive and negative samples for update. This method makes a common assumption in
tracking that the training samples follow the same distribution as the candidate samples. Such an assumption is
problematic if the object’s appearance or background changes drastically or continuously, which causes the
underlying data distribution to keep changing [23].

3 Proposed Tracking Approach

The proposed tracking approach is comprised of four intertwined components, listed below. To ease
understanding of the overall system, we first overview the components below, and then provide the details for
each component in the following subsections.

1. Particle Filtering Framework. An object’s location in consecutive frames is parameterised as a distribution
in a particle filter framework [3], where a set of particles represents the distribution and each particle
represents a location. The location history of the tracked object in previous frames is taken into account to
create a set of candidate object locations in a new frame.

2. Particle Representation. We represent the i-th particle at time t using an affine subspace A(t)
i , which is

constructed by taking into account the appearance of the i-th candidate location at time t as well as the
appearance of the tracked object in several immediately preceding frames. Each affine subspace A(t)

i is
comprised of mean µ(t)

i and basis U (t)
i .

3. Bag of Affine Subspaces. To take into account drastic appearance changes, the tracked object is modelled by
a set of affine subspaces, which we refer to as bag B. During tracking the bag first grows to a pre-defined
size, and then its size is kept fixed by replacing the oldest affine subspace with the latest affine subspace.

4. Comparing Affine Subspaces. Each candidate subspace A(t)
i from the pool of candidates is compared to

the affine spaces in bag B. The most likely candidate subspace is deemed to represent the best particle,
which in turn indicates the new location of the tracked object. The distance between affine subspaces is
comprised of the distance between their means and the Grassmann geodesic distance between their bases.
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3.1 Particle Filtering Framework

We aim to obtain the location x ∈ X , y ∈ Y and the scale s ∈ S of an object in frame t based on information
obtained from previous frames. A blind search in the space of location and scale is inefficient, since not all
possible combinations of x, y and s are plausible. To efficiently search the location and scale space, we adapt
a particle filtering framework [3, 41], where the object’s location in consecutive frames is parameterised as a
distribution. The distribution is represented using a set of particles, with each particle representing a location
and scale.

Let z(t)i = [x
(t)
i , y

(t)
i , s

(t)
i ]T denote the state of the i-th particle comprised of the location and scale at time t.

Using importance sampling [3], the density of the location and scale space (or most probable candidates) at
time t is estimated as a set of N particles {z(t)i }Ni=1 using particles from the previous frame {z(t−1)i }Ni=1 and their
associated weights {w(t−1)

i }Ni=1 (with constraints
∑N

i=1 w
(t−1)
i = 1 and each wi ≥ 0). For now we assume the

associated weights of particles are known and later discuss how they can be determined.
To generate {z(t)i }Ni=1, {z(t−1)i }Ni=1 is first sampled (with replacement) N times. The probability of choosing

z
(t−1)
i , the i-th particle at time t−1, is equal to the associated weightw(t−1)

i . Each chosen particle then undergoes
an independent Brownian motion, which is modelled by a Gaussian distribution. As a result, for a chosen
particle z(t−1)i , a new particle z(t)i is obtained as a random sample from N (z

(t−1)
i ,Σ), where N (µ,Σ) denotes a

Gaussian distribution with mean µ and diagonal covariance matrix Σ. The latter governs the speed of motion
by controlling the location and scale variances.

3.2 Particle Representation via Affine Subspaces

To accommodate a degree of variations in object appearance, particle z(t)i is represented by an affine
subspaceA(t)

i , constructed from the appearance of the i-th candidate location at time t as well as the appearance
of the tracked object in several immediately preceding frames. Each affine subspace A(t)

i can be described by a
2-tuple:

A(t)
i =

{
µ

(t)
i ,U

(t)
i

}
(1)

where µ(t)
i ∈ RD is the origin (mean) of the subspace and U (t)

i ∈ RD×n is the basis of the subspace. The
parameter n is the number of basis vectors.

The subspace is obtained as follows. Let v(z
(t)
i ) represent the vectorised form of the i-th candidate image

patch at time t. The top-left corner of the patch is indicated by (x(t)i , y
(t)
i ) and its size by s(t)i . The patch is resized

to a fixed size of H1 ×H2 pixels and represented as a column vector of size D = H1 ×H2. In the same manner,
let v(z

(t−1)
∗ ) denote the vectorised form of the appearance of the tracked object at time (t − 1), with z(t−1)∗

denoting the particle that was deemed at time (t− 1) to represent the tracked object. The vectorised forms of
the candidate image patch as well as the patches containing the tracked object in the previous P frames are
used to construct the following D × (P + 1) sized matrix:

V
(t)
i =

[
v(z

(t)
i ),v(z

(t−1)
∗ ), · · · ,v(z

(t−P )
∗ )

]
(2)

The subspace origin µ(t)
i is the mean of V (t)

i . The subspace basis U (t)
i is obtained by performing singular value

decomposition (SVD) of V (t)
i and choosing the n dominant left eigenvectors corresponding to the n largest

eigenvalues.

3.3 Bag of Affine Subspaces

To take into account drastic appearance changes that might not be well modelled by subspaces, we propose to
adapt the approach of keeping a history of object appearance variations [4], by modelling the tracked object via
a set of affine subspaces obtained during the tracking process. We refer to such a set as a bag of affine subspaces,
defined as:

B = {A1, · · · ,AK} (3)

where K is the number of subspaces to keep. The bag is updated every W frames by replacing the oldest affine
subspace with the latest. The size of bag determines the memory of the tracking system.
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To demonstrate the benefit of the bag approach, consider the following scenario. A person is being tracked,
with the appearance of their whole body modelled as a single subspace. At some point a partial occlusion occurs,
and only the upper body is visible for several frames. The tracker then learns the new occluded appearance
of the person. If the tracker is only aware of the very last seen appearance (ie., the upper body), the tracker is
likely to lose the object upon termination of the occlusion. Keeping a set of affine subspaces (ie., both upper
body and whole body) increases memory of the tracked object and hence can help to overcome the confounding
effect of drastic appearance changes.

3.4 Comparing Affine Subspaces

Each candidate subspace A(t)
i from the pool of candidates is compared to the affine spaces in bag B. The most

likely candidate subspace is deemed to represent the best particle, which in turn indicates the new location and
scale of the tracked object.

The simplest distance measure between two affine subspaces is the minimal Euclidean distance, ie., the
minimum distance of any pair of points of the two subspaces. However, such a measure does not form a
metric [5] and it does not consider the angular distance between affine subspaces, which can be a useful
discriminator [20]. On the other hand, using only the angular distance ignores the origin of affine subspaces
and reduces the problem to a linear subspace case, which we wish to avoid.

To address the above limitations, we propose a distance measure with the following form:

dist(Ai,Aj) = α d̂o

(
µi,µj

)
+ (1− α) d̂g (U i,U j) (4)

where α ∈ [0, 1] is a mixing weight, while d̂o(·, ·) ∈ [0, 1] is a normalised distance between the origins of the
subspaces and d̂g(·, ·) ∈ [0, 1] is a normalised Grassmann geodesic distance between bases of the subspaces.

We define the distance between the origins of Ai and Aj as:

d̂o

(
µi,µj

)
= γ‖µi − µj‖2 (5)

where γ is a scaling parameter. Under the assumption that normalised images are used so that each pixel value
is in the [0, 1] interval, the elements of µ ∈ RD are also in the [0, 1] interval. As such, the maximum value of the
‖µi − µj‖2 component in Eqn. (5) is equal to D, and hence γ = 1/D.

A Grassmann manifold (a special type of Riemannian manifold) is defined as the space of all n-dimensional
linear subspaces of RD for 0 < n < D [1, 11, 13, 14, 29]. A point on Grassmann manifold GD,n is represented by
an orthonormal basis through a D × n matrix. The length of the shortest smooth curve connecting two points
on a manifold is known as the geodesic distance. For Grassmann manifolds, the squared geodesic distance
between subspaces E and F is given by:

dg (E,F ) = ‖Θ‖2 (6)

where Θ = [θ1, θ2, · · · , θn] is the principal angle vector, ie.

cos(θk) = max
ek∈E, fk∈F

eTk fk (7)

subject to ‖ek‖ = ‖fk‖ = 1, eTk el = fT
k f l = 0, l = 1, . . . , k–1. In other words, the first principal angle θ1 is the

smallest angle between all pairs of unit vectors in the two subspaces, with the remaining principal angles
defined similarly. The principal angles can be computed through the SVD of ETF , with the k-th singular value
corresponding to cos(θk) [11, 1]. The principal angles have the property of θi ∈ [0, π/2]. As such, the maximum
value of dg (E,F ) is nπ2/4. Therefore, we define the normalised squared Grassmann geodesic distance as

d̂g (E,F ) = β dg (E,F ) (8)

where β = 4/(nπ2).
To measure the overall likelihood of a candidate affine subspace A(t)

i according to bag B, the individual
likelihoods ofA(t)

i according to each affine subspace in B are integrated using a straightforward sum rule [21, 31]:

p
(
A(t)

i |B
)

=
∑K

k=1
p̂
(
A(t)

i |B [k]
)

(9)
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where p̂
(
A(t)

i |B [k]
)

is the normalised likelihood and B [k] indicates the k-th affine subspace in bag B. In order
to generate the new set of particles for a new frame, the overall likelihood for each particle is considered as the
particle’s weight. The likelihoods are normalised to sum to 1 using:

p̂
(
A(t)

i |B[k]
)

=
p
(
A(t)

i |B[k]
)

∑N
j=1 p

(
A(t)

j |B[k]
) (10)

where N is the number of particles. The individual likelihoods are obtained using:

p
(
A(t)

i |B[k]
)

= exp

(
−dist(A(t)

i ,B[k])

σ

)
(11)

where σ is a fixed parameter used to ensure that large distances result in low likelihoods. The most likely
candidate subspace is deemed to represent the best particle, which in turn indicates the new location of the
tracked object:

z
(t)
∗ = z

(t)
j , where j = argmax

i
p
(
A(t)

i |B
)

(12)

3.5 Computational Complexity

The computational complexity of the proposed tracking framework is dominated by generating a new affine
subspace and comparing two subspaces. The subspace generation step requires O(Dn2) operations by
performing thin SVD [8]. Computing the geodesic distance between two points on Grassmann manifold
GD,n, requires O(n3 +Dn2) operations for calculating the principal angles.

4 Experiments

We evaluated the accuracy of the proposed method on eight commonly used challenging videos that have
ground truth2 for object locations: Girl [6], Occluded Face [2], Occluded Face 2, Tiger 1, Tiger 2, Coke Can, Surfer,
and Coupon Book [4]. The videos contain various challenges such as object occlusions, impostor objects, pose
variations, long-term appearance changes, illumination variations and non-stationary cameras. Example frames
are shown in Fig. 3.

Occluded Face contains a face to be tracked with an occlusion challenge due to a book covering various
parts of the face. Occluded Face 2 also contains a face tracking task with occlusions, but includes long-term
appearance changes due to the addition of a hat. The Girl sequence involves tracking a face with challenges such
as severe pose variations and occlusion caused by another face, acting as a distractor. Tiger 1 and Tiger 2 contain
a moving toy with many challenges such as frequent occlusions, pose variations, fast motion (which causes
motion blur) and illumination changes. Coupon Book contains a book being moved around, with a very similar
impostor book introduced to distract the tracker. Coke Can contains a specular object being moved around by
hand, which is subject to occlusions, fast motion as well as severe illumination variations due to a lamp. Surfer
involves tracking of the face of a surfer with many challenges such as non-stationary camera, pose variations
and occlusion caused by waves.

Each video is composed of 8-bit grayscale images, resized to 320 × 240 pixels. We used normalised pixel
values (between 0 and 1) as image features. For the sake of computational efficiency in the affine subspace
representation, we resized each candidate image region to 32 × 32, with the number of eigenvectors (n) and
number of previous frames (P ) set to 3 and 5, respectively. The number of particles (N ) is set to 100. Furthermore,
we only consider 2D translation and scaling in the motion modelling component.

Based on preliminary experiments, a bag of size K = 10 with the update rate W = 5 is used. For the
Brownian motion covariance matrix (Section 3.1), the diagonal variances corresponding to the x location, y
location and scale are set to 52, 52 and 0.012, respectively. The parameter σ in Eqn. (11) is set to 0.01. We have
kept the parameters fixed for all videos, to deliberately avoid optimising for any specific video. This is reflective
of real-life conditions, where a tracker must work in various environments.

2The videos and the corresponding ground truth were obtained from http://vision.ucsd.edu/˜bbabenko/project miltrack.html
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Figure 1: Tracking error for various settings of α in
Eqn. (4). Tracking error is measured as the distance
(in pixels) between the center of the bounding box
around the tracked object and the ground truth. For
each setting of α, the mean of the distances over the
eight videos is reported. The bars indicate the standard
error of the mean [17]. α = 0: only the eigenbasis
is used (ie. linear subspace), α = 0.5: eigenbasis and
mean (ie. affine subspace), α = 1: mean only (origins
of subspaces).
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Figure 2: Comparison of the proposed method
against Tracking-Learning-Detection (TLD) [19],
Multiple Instance Learning Tracking (MILTrack) [4],
Sparsity-based Collaborative Model (SCM) [43].
Tracking error is measured as per Fig. 1.

4.1 Quantitative Comparison

Following [4], we evaluated tracking error using the distance (in pixels) between the center of the bounding box
around the tracked object and the ground truth. The mean of the distances over the eight videos is taken as the
overall tracking error.

Fig. 1 shows the tracking error for three settings of α in Eqn. (4). α = 0 ignores the origins and only uses the
linear subspaces (ie., µ = 0 for all models); α = 0.5 combines the origins and subspaces; α = 1 uses only the
origins. Using α = 0.5 leads to considerably lower error than the other two settings, thereby indicating that use
of the mean in conjunction with the subspace basis is effective.

Fig. 2 compares the tracking error of proposed tracker against three recent methods:
Tracking-Learning-Detection (TLD) [19], Multiple Instance Learning Tracker (MILTrack) [4], and Sparsity-based
Collaborative Model (SCM) [43]. For simplicity, the proposed tracker used α = 0.5 in Eqn. (4). Fig. 3 shows the
resulting bounding boxes for several frames from the Coupon Book, Surfer, Coke Can, Occluded Face 2, and Girl
videos. We use the publicly available source codes for MILTrack2, TLD3, and SCM4.

The proposed method obtains notably lower tracking error than TLD, MILTrack and SCM. Compared to
TLD (the second best tracker), the mean distance to ground truth has decreased by more than 30%. Furthermore,
the standard error of the mean [17] for the proposed tracker is considerably lower, indicating more consistent
performance.

3http://info.ee.surrey.ac.uk/Personal/Z.Kalal/tld.html
4http://ice.dlut.edu.cn/lu/Project/cvpr12 scm/cvpr12 scm.htm
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4.2 Qualitative Comparison

On the Coupon Book video, TLD and SCM are confused by the distractor/impostor book. While MILTrack mostly
stays with the original book, its accuracy is lower than the proposed method which consistently stays centered
on the original book, unaffected by the impostor book. On the Surfer video, the proposed method and TLD
consistently track the person’s face. This is in contrast to SCM which quickly loses track, and MILTrack which
drifts towards the end of the video. On the Coke Can video, which contains dramatic illumination changes and
rapid movement, MILTrack loses track after a part of the object is almost faded by the lamp light. SCM and
TLD are affected to a lesser extent. In contrast, the proposed method consistently tracks the can, unaffected
by the illumination variations. On the Occluded Face 2 video, SCM and TLD lose accuracy due to confusion
by occlusions, while SCM and the proposed method correctly track the face. On the Girl video, the proposed
method and SCM manage to track the correct person throughout the whole video. TLD is affected by the severe
pose variation (ie. the person turning around) but recovers when the face appears frontal again. MILTrack loses
track after the pose change and then tracks the distractor/impostor face. Overall, the qualitative observations
agree with the quantitative results, with the proposed method achieving the lowest tracking error.

(a)

(b)

(c)

(d)

(e)

Legend:
proposed method TLD [19] MILTrack [4] SCM [43]

Figure 3: Examples of bounding boxes resulting from tracking on several videos containing occlusions,
distractors/impostors, pose variations and variable object illumination. Best viewed in colour. Frames from the
following videos are shown: (a) Coupon Book, (b) Surfer, (c) Coke Can, (d) Occluded Face 2 [4], and (e) Girl [6].
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5 Main Findings and Future Directions

In this paper we addressed the problem of object tracking subject to appearance changes due to occlusions as
well as variations in illumination and pose. We proposed an adaptive tracking approach where the object is
modelled as a continuously updated bag of affine subspaces, with each subspace constructed from the object’s
appearance over several consecutive frames. The bag of affine subspaces takes into account drastic appearance
changes that are not well modelled by individual subspaces, such as occlusions. Furthermore, during the
search for the object’s location in a new frame, we proposed to represent the candidate image areas also as
affine subspaces, by including the immediate tracking history over several frames. Distances between affine
subspaces from the object model and candidate areas are obtained by exploiting the non-Euclidean geometry of
Grassmann manifolds. The use of bags of affine subspaces was embedded in a particle filtering framework.

Comparative evaluations on challenging videos against several recent discriminative trackers, such as
Tracking-Learning-Detection [19] and Multiple Instance Learning Tracking [4], show that the proposed approach
obtains notably better accuracy and consistency. The proposed approach also has the benefit of not requiring a
separate training phase.

Future research directions include extending the bag update process to follow a semi-supervised fashion,
where the effectiveness of a new learned affine subspace is used to determine whether the subspace should be
added to the bag. Furthermore, the bag size and update rate can be dynamic, possibly dependent on the degree
of tracking difficulty in challenging scenarios.
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axis-parallel rectangles. Artificial Intelligence, 89(1-2):31–71, 1997.

[11] A. Edelman, T. Arias, and S. Smith. The geometry of algorithms with orthogonality constraints. SIAM
Journal on Matrix Analysis and Applications, 20(2):303–353, 1998.

10



[12] A. W. Fitzgibbon and A. Zisserman. Joint manifold distance: a new approach to appearance based
clustering. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 26–33, 2003.

[13] M. Harandi, C. Sanderson, C. Shen, and B. C. Lovell. Dictionary learning and sparse coding on Grassmann
manifolds: An extrinsic solution. In Int. Conference on Computer Vision (ICCV), pages 3120–3127, 2013.
http://dx.doi.org/10.1109/ICCV.2013.387.

[14] M. Harandi, C. Sanderson, S. Shirazi, and B. C. Lovell. Kernel analysis on Grassmann manifolds for action recognition.
Pattern Recognition Letters, 34(15):1906–1915, 2013. http://dx.doi.org/10.1016/j.patrec.2013.01.008.

[15] J. Ho, K. Lee, M. Yang, and D. Kriegman. Visual tracking using learned linear subspaces. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 782–789, 2004.

[16] W. Hu, X. Li, W. Luo, X. Zhang, S. Maybank, and Z. Zhang. Single and multiple object tracking using log-Euclidean
Riemannian subspace and block-division appearance model. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(12):2420–2440, 2012.

[17] R. A. Johnson, I. Miller, and J. Freund. Probability and Statistics for Engineers. Pearson, 8th edition, 2010.

[18] T. Kailath. The divergence and Bhattacharyya distance measures in signal selection. IEEE Transactions on Communication
Technology, 15(1):52–60, 1967.

[19] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(7):1409–1422, 2012.

[20] T. Kim, J. Kittler, and R. Cipolla. Discriminative learning and recognition of image set classes using canonical
correlations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):1005–1018, 2007.

[21] J. Kittler, M. Hatef, R. Duin, and J. Matas. On combining classifiers. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(3):226–239, 1998.

[22] M. La Cascia, S. Sclaroff, and V. Athitsos. Fast, reliable head tracking under varying illumination: An approach
based on registration of texture-mapped 3d models. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(4):322–336, 2000.

[23] G. Li, Q. Huang, L. Qin, and S. Jiang. SSOCBT: A robust semisupervised online covboost tracker that uses samples
differently. IEEE Transactions on Circuits and Systems for Video Technology, 23(4):695–709, 2013.

[24] X. Li, W. Hu, Z. Zhang, X. Zhang, and G. Luo. Robust visual tracking based on incremental tensor subspace learning.
In Int. Conference on Computer Vision (ICCV), pages 1–8, 2007.

[25] Y. Li. On incremental and robust subspace learning. Pattern Recognition, 37(7):1509–1518, 2004.

[26] J. Lim, D. A. Ross, R.-S. Lin, and M.-H. Yang. Incremental learning for visual tracking. In Advances in Neural Information
Processing Systems, pages 793–800, 2004.

[27] H. Liu, S. Chen, and N. Kubota. Intelligent video systems and analytics: A survey. IEEE Transactions on Industrial
Informatics, 9(3):1222–1233, 2013.

[28] H. Lu, S. Lu, D. Wang, S. Wang, and H. Leung. Pixel-wise spatial pyramid-based hybrid tracking. IEEE Transactions on
Circuits and Systems for Video Technology, 22(9):1365–1376, 2012.

[29] Y. M. Lui. Advances in matrix manifolds for computer vision. Image and Vision Computing, 30(6-7):380–388, 2012.

[30] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental learning for robust visual tracking. Int. Journal of Computer
Vision, 77(1-3):125–141, 2008.

[31] C. Sanderson and K. K. Paliwal. Identity verification using speech and face information. Digital Signal Processing,
14(5):449–480, 2004. http://dx.doi.org/10.1016/j.dsp.2004.05.001.

[32] S. Shirazi, M. T. Harandi, B. C. Lovell, and C. Sanderson. Object tracking via non-Euclidean geometry:
A Grassmann approach. In IEEE Winter Conference on Applications of Computer Vision (WACV), pages 901–908, 2014.
http://dx.doi.org/10.1109/WACV.2014.6836008.

[33] D. Skocaj and A. Leonardis. Weighted and robust incremental method for subspace learning. In Int. Conference on
Computer Vision (ICCV), pages 1494–1501, 2003.

[34] D. Wang, H. Lu, and M.-H. Yang. Least soft-threshold squares tracking. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 2371–2378, 2013.

[35] R. Wang, S. Shan, X. Chen, and W. Gao. Manifold-manifold distance with application to face recognition based on
image set. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 1–8, 2008.

[36] S. Wang, H. Lu, F. Yang, and M.-H. Yang. Superpixel tracking. In Int. Conference on Computer Vision (ICCV), pages
1323–1330, 2011.

11

http://dx.doi.org/10.1109/ICCV.2013.387
http://dx.doi.org/10.1016/j.patrec.2013.01.008
http://dx.doi.org/10.1016/j.dsp.2004.05.001
http://dx.doi.org/10.1109/WACV.2014.6836008


[37] T. Wang, A. Backhouse, and I. Gu. Online subspace learning on Grassmann manifold for moving object tracking in
video. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 969–972, 2008.

[38] C. Yang, R. Duraiswami, and L. Davis. Efficient mean-shift tracking via a new similarity measure. In IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pages 176–183, 2005.

[39] M. Yang, Z. Fan, J. Fan, and Y. Wu. Tracking nonstationary visual appearances by data-driven adaptation. IEEE
Transactions on Image Processing, 18(7):1633–1644, 2009.

[40] M.-H. Yang and J. Ho. Toward robust online visual tracking. In Distributed Video Sensor Networks, pages 119–136.
Springer, 2011.

[41] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Computing Surveys, 38(4):1–45, 2006.

[42] K. Zhang, L. Zhang, and M. Yang. Real-time object tracking via online discriminative feature selection. IEEE Transactions
on Image Processing, 22(12):4664–4677, 2013.

[43] W. Zhong, H. Lu, and M.-H. Yang. Robust object tracking via sparsity-based collaborative model. In IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pages 1838–1845, 2012.

12


	Introduction
	Related Work
	Subspace Based Trackers
	Other Generative Trackers
	Discriminative Trackers

	Proposed Tracking Approach
	Particle Filtering Framework
	Particle Representation via Affine Subspaces
	Bag of Affine Subspaces
	Comparing Affine Subspaces
	Computational Complexity

	Experiments
	Quantitative Comparison
	Qualitative Comparison

	Main Findings and Future Directions

