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Smart Grid
Power flow Information flow

 Two-way flow of power and information, and more advanced 
sensory systems induce smartness into the power grid.
– Intelligent control of generation and distribution.

– Better integration of renewable energy.

– Enhanced security and flexibility.

 More importantly, energy usage can be more efficient with 
dynamic pricing and demand-side response (i.e., load 
scheduling, battery control, and energy purchase decisions).
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Demand-Side Energy Management System

 Electricity market allows day-ahead and real-time purchases.
– Day-ahead purchase for each hour of the next day at a discounted price.

– Real-time purchase to compensate for any insufficient purchase.

 Goal: Derive a day-ahead energy purchase policy that takes 
into consideration the cost of battery usage.

day-ahead energy purchase

real-time energy purchase

renewable energy arrival

load

charge/dischargeEMS

Smart Grid
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 In the literature, energy management policies often assume …

Main Contributions

 Propose a day-ahead energy purchase policy based solely on 
historical data utilize reinforcement learning. 

NO need for any modelling of the load profile,  
renewable energy arrival, and pricing.

 Model battery cost based on its depth-of-discharge (DoD).

Related Works and Main Contributions

knowledge of 

future demands

[Qian 2013]

knowledge of 

renewable energy 

statistics [Jiand 2011]

knowledge of 

electricity price 

[Atzeni et al. 2013]

negligible 

battery cost 
[Koutsopoulos 2011] 

[Erseghe 2014]

Battery is 
NOT free.
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 At day    , the EMS determines the day-ahead energy purchase 

for the      hours of the next day, i.e., day           , based on the
current-day load                                        , renewable energy   

, and pricing                                                  
and                                               .
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Cost of (Grid) Energy Purchase
 Residual (or excess) energy at time     is

 The cost of (grid) energy purchase is

where                is the dumping cost.

Residual battery 
at time

Renewable 
energy at time 

Day-ahead purchase 
for time 

Load at 
time 

dump

Battery 
capacity 
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 Depth-of-Discharge (DoD): ratio of battery 
discharge over the maximum  capacity     .

– Li-ion battery (2012):

Battery Depth-of-Discharge (DoD)

 The no. of charges/discharges in a lifetime (i.e., its cycle life) 
is related to the DoD by [David et al. 2013]
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Cost of Battery Usage
 For a battery of price           (USD/kWh), the cost of battery 

discharge up to a certain DoD is

 Define the current depth-of-discharge (cDoD) at time     as 
the DoD relative to last charge, which is given by

 Define cost of battery usage at time     as the marginal cost 
of increasing the DoD after the current usage, i.e., 
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EMS based on Reinforcement Learning
 Goal: Develop a day-ahead energy purchase policy based only 

on historical data using reinforcement learning.

 Reinforcement learning determines an action for each state 
(i.e., a policy) so as to maximize the future expected reward.
– E.g., determine the energy purchase (action) for the current day so as 

to minimize the expected future energy cost.

 The policy is learned by observing the rewards obtained from 
the actions taken in past states (i.e., historical data).
– E.g., by observing the energy costs obtained from the energy purchase 

decisions (actions) made in previous days.
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State, Action, and Reward of an EMS
 In our problem, the state of day     is

 The action is the energy purchase over      hours of day          , 
i.e.,                                                    .

 The reward is the negative of the total energy cost, i.e., 

Renewable 
energy 
(over H hrs)

Load 
profile

Day-ahead 
price Real-time 

price

Battery 
level

= grid cost = battery cost 
(measured by marginal 
cost of DoD increase)
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Least-Square Policy Iteration (LSPI)
 Goal of RL: Find an action      for each state     that maximizes 

the state-action value function

i.e., the expected future reward.

(1) Linear approximation (for dimensionality reduction):

(2) Policy Iteration:

Learns weights           
for policy      based on 
historical data.

Update      such that

problem-specific 
basis functions

 Parameter-by-parameter 
optimization

discount factor
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 Suppose that              .

Basis Selection

estimated grid cost

estimated battery cost

estimated end day battery level

residual renewable energy

real-time electricity price 
(for every 4 time slots)

end day battery level
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Prediction of Future States
 Bases functions               and       require estimates (i.e., 

predictions) of the next states         ,          , and               .

 Linear least-square predictions

where                 and        are least square estimators.

Remark: Data preprocessing is required to deal with the non-
stationarity of the data and the effect of outliers.

 Cancellation of the mean over the most recent                 days.

 Negligence of the data that lies outside of 3 standard 
deviations.
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Real-Life Data
 Number of time slot in a day:             .

 Solar energy (Chicago, PV panel size 25 m2)   [NREL PVWatts Calculator]

 Residential load (average of a class of residential single families 
with electric space heat delivery, 2010-2014) [ComEd]

 Day-ahead electricity price (2010-2014) [ComEd RRTP program]
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Simulation Settings

 Battery price:                     (USD/kWh)

 Dumping cost: (USD/kWh)

 Discount factor: 

 Stopping criterion: 

 Baseline (Equal cost policy):
The action at time    of day            is chosen as

so that the anticipated cost is equal in each time slot.

[Ramavajjala et al. 2012]

[Tesla 2015]
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Total Cost Per Year vs. Battery Size
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Battery Cost Per Year vs. Battery Size
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Grid Cost Per Year vs. Battery Size
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Average Cost Per Year vs.111
 Recall that                                  .
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Conclusion
 Proposed a novel method for evaluating the cost of battery 

usage based on the depth-of-discharge (DoD). 

 Utilized reinforcement learning to develop an energy 
management policy that relies only on historical data (instead 
of assuming statistical models).

 Battery cost is not negligible and is essential to finding a 
practical energy management policy.


