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Smart Grid
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® Two-way flow of power and information, and more advanced
sensory systems induce smartness into the power grid.
— Intelligent control of generation and distribution.
— Better integration of renewable energy.
— Enhanced security and flexibility.

® More importantly, energy usage can be more efficient with
dynamic pricing and demand-side response (i.e., load

scheduling, battery control, and energy purchase decisions).
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Demand-Side Energy Management System

A Smart Grid renewable energy arrival
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EMS | charge/discharge s

day-ahead energy purchase |°
real-time energy purchase
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® Electricity market allows day-ahead and real-time purchases.
— Day-ahead purchase for each hour of the next day at a discounted price.

— Real-time purchase to compensate for any insufficient purchase.

® Goal: Derive a day-ahead energy purchase policy that takes
into consideration the cost of battery usage.




Related Works and Main Contributions

® |n the literature, energy management policies often assume ...

wledge of
e energy

‘ \/ —
o Battery is

> NOT free.

Main Contributions

® Propose a day-ahead energy purchase policy based solely on
historical data utilize reinforcement learning. '

=2 NO need for any modelling of the load profile,
renewable energy arrival, and pricing.




EMS with Day-Ahead Purchase QO
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® At day d, the EMS determines the day-ahead energy purchase
a1 = [aa+1(1), ..., aay1(H)]
for the H hours of the next day, i.e., day d + 1, based on the
current-day load x4 = [za(1),...,za(H)], renewable energy
rq = [ra(1),...,74(H)], and pricing p;"* = [p5>(1),...,py (H)]
and pg’ = [pd (1),...,pq (H)].




Cost of (Grid) Energy Purchase

Day-ahead purchase
for time h

ed(h) = bd(h — 1) -+ Td(h) -+ Oéd(h) — xd(h)
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Residual battery Renewable Load at
attime h —1 energy at time h time h

® Residual (or excess) energy at time A is

0<esh)<C ([  eah)>C
dump

Battery ;Z‘gZ(h% C
capauty i I
= ed bd(h) = C
/ \\ y,

® The cost of (grid) energy purchase is
k5" (h) = pi* (h)aa(h) + pi* (R)Ba(h) + pi* (R)3a(h)
where p?*(h) is the dumping cost.




® Depth-of-Discharge (DoD): ratio of battery
discharge over the maximum capacity C.

Battery Depth-of-Discharge (DoD)
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® The no. of charges/discharges in a lifetime (i.e., its cycle life)

is rela

Depth-of-Discharge

1

ted to the DoD by N¢ycie = ¢1 - DoD ™ 2. [David et al. 2013]

09

0.8

0.7

0.6

0.4

0.3

0.2

01

10"

10°

10°
Cycle life

107 10° 10°

— Li-ion battery (2012):
c1 = 1331, ¢y = 1.825




Cost of Battery Usage

® For a battery of price pvatt (USD/kWh), the cost of battery
discharge up to a certain DoD is

Pbatt ° C _ Poatt ° C
NcYcle c1 - DoD ™2 .

® Define the current depth-of-discharge (cDoD) at time A as
the DoD relative to last charge, which is given by

cDoDg(h—1)+ 2=t 20ath) =g by (h—1) > ba(h)
0, otherwise.

cDoDg(h) = {

® Define cost of battery usage at time A as the marginal cost
of increasing the DoD after the current usage, i.e.,

I{batt(h) — max 4 0 Phatt - C B Dhatt - C
¢ ¢1 - cDoDg(h)=¢2  ¢1-cDoDg(h — 1)—¢2




EMS based on Reinforcement Learning

® Goal: Develop a day-ahead energy purchase policy based only
on historical data using reinforcement learning.

® Reinforcement learning determines an action for each state
(i.e., a policy) so as to maximize the future expected reward.

— E.g., determine the energy purchase (action) for the current day so as
to minimize the expected future energy cost.

® The policy is learned by observing the rewards obtained from
the actions taken in past states (i.e., historical data).

— E.g., by observing the energy costs obtained from the energy purchase
decisions (actions) made in previous days.




State, Action, and Reward of an EMS

® |n our problem, the state of day d is

DA
Sd — (I‘d, Xdy Pd+15 pd bd)

Renewable Day-ahead

energy Load orice Real-time Bftte'lry
eve

(over H hrs) profile price

® The action is the energy purchase over H hours of dayd + 1,

e, agr1 = [agr1(1),. .., 041 (H)]
® The reward is the negative of the total energy cost, i.e.,
d batt
R(Sd, a) Z [ Kge(h) + Kyt (h)}
h=1 = grid cost = battery cost

(measured by marginal
cost of DoD increase)




Least-Square Policy Iteration (LSPI)

® Goal of RL: Find an action o for each state s; that maximizes

the state-action value function
discount factor

Q" (84, ) =R (84, &) HIE [Q" (Sa41, (Sa+1)) |84, @]

i.e., the expected future reward.

(1) Linear approximation (for dimensionality reduction):

Q" (Sd,ad+1;{’wj}§:1) Z(bﬂ (Sd, Ctav1)w;

problem-specific

(2) Policy Iteration: m basis functions

. e ) A )
Learns weights {w;}%_; Update 7 such that

for policy ™ based on
\historical data.

7(s) « arg max @W(s, a; {w; }?’:1)
N/ N | - v

W => Parameter-by-parameter

optimization
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P15(84, )
P16(84, o)
$17(84, o)

Basis Selection

® Suppose that H = 24,

24 A grld

o k501 (h) =————> estimated grid cost

24  ~batt

w1 kgt (h) =——> estimated battery cost

bay1(24) ~
> 1de‘T(h)
Sh_spa (h)

> estimated end day battery level

real-time electricity price

24
o Pa(h)

Sor_i(Ta(h) — xa(h))
(

Zi:5 (ra(h) —xa(h))

neor (ra(h) — xa(h))

=
(for every 4 time slots)

—> residual renewable energy

ba(24)
1

> end day battery level
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Prediction of Future States

® Bases functions ¢1, ¢2, and ¢3 require estimates (i.e.,
predictions) of the next states fa+1, %41, and Pyy;(h).

® Linear least-square predictions
A A AR,T RT
rqi1 = Ferg, Xg11 = FxXq, Pg+1 = Fopg -

where F,, Fx, and F, are least square estimators.

Remark: Data preprocessing is required to deal with the non-
stationarity of the data and the effect of outliers.

v’ Cancellation of the mean over the most recent D = 30 days.

v Negligence of the data that lies outside of 3 standard
deviations.
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Real-Life Data

® Number of time slotinaday:H = 24.
® Solar energy (Chicago, PV panel size 25 m?) [NREL PVWatts Calculator]
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® Residential load (average of a class of residential single families
with electric space heat delivery, 2010-2014) [ComEd]
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Simulation Settings

® Battery price: pvait = 500 (USD/kWh) [Tesla 2015]

® Dumping cost: pg" (h) = 0.004 (USD/kWh) [Ramavajjala et al. 2012]
® Discount factor: v=0.9

® Stopping criterion: e = 107"

® Baseline (Equal cost policy):
The action at time h of day d + 1 is chosen as

= A 1/13de1()
ag+1(h) = Td+1(h1) — Tg+1(ha

so that the anticipated cost is equal in each time slot.
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Total Cost Per Year vs. Battery Size
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Battery Cost Per Year vs. Battery Size

Average Batteries Cost Per Year ($)
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Grid Cost Per Year vs. Battery Size

Average Grid Cost Per Year ($)
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Average Cost Per Year vs. C2
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Conclusion

® Proposed a novel method for evaluating the cost of battery
usage based on the depth-of-discharge (DoD).

® Utilized reinforcement learning to develop an energy
management policy that relies only on historical data (instead
of assuming statistical models).

® Battery cost is not negligible and is essential to finding a
practical energy management policy.
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