ESTIMATION OF TDOA FOR ROOM REFLECTIONS BY ITERATIVE WEIGHTED L1 CONSTRAINT

A method to extract Time Difference of Arrivals (TDOAs) for room reflections:

- Estimation of TDOAs with **no a priori** information (statistic of signals, walls/reflectors positions)
- Few parameters to tune.
- Fast, iterative solution that promotes sparsity and non-negativity.
- Tested with real signals (speech and non-speech).

Room Reconstruction Problem

The estimation of reliable TDOAs is a necessary step for room reconstruction to recover the 3D position and orientation of reflectors and the position of sound sources/microphones.

The cross-relation property of a Multi-Output system:

 $h_{m_i}(k)$ is the Room Impulse Response (RIR) between source location and microphone m_i location. For every couple of microphones we have that

$$h_{m_1}(k) * h_{m_2}(k) * s(k) = h_{m_2}(k) * h_{m_1}(k) * s(k),$$

$$y_{m_{2}}(k) \qquad y_{m_{1}}(k)$$
Thus giving:

$$h_{m_{1}}(k) * y_{m_{2}}(k) = h_{m_{2}}(k) * y_{m_{1}}(k)$$

$$y_{m_{1}}(k) * h_{m_{2}}(k) = Y_{m_{1}}\mathbf{h}_{m_{2}}$$

$$y_{m_{1}}(k) * h_{m_{2}}(k) = Y_{m_{1}}\mathbf{h}_{m_{2}}$$

$$y_{m_{1}}(k) = Y_{m_{2}}\mathbf{h}_{m_{1}}$$

$$y_{m_{1}}(k) = Y_{m_{2}}\mathbf{h}_{m_{1}}$$

$$y_{m_{1}}(k) = Y_{m_{2}}\mathbf{h}_{m_{1}}$$

 $m_1 \neq m_2$ Tong, G. Xu and T. Kailath. "Blind identification and equalization based on second order statistics: a time domain approach", IEEE Trans. On Information Theory, 1994.

Marco Crocco and Alessio Del Bue

Visual Geometry and Modelling (VGM) Lab Pattern Analysis and Computer Vision (PAVIS) Department Istituto Italiano di Tecnologia (IIT), Genova, Italy

Leading to: $J(h) = \sum \|Y_{m_1}h_{m_2} - Y_{m_2}h_{m_1}\|_2^2 = h^{\top}Qh$

Solution of the quadratic cost function J(h):

Include penalty terms in the cost function to avoid trivial solutions

Sparse:
$$\min_{\mathbf{h}} J(\mathbf{h}) + \lambda \|\mathbf{h}\|_0 \quad s.t. \quad \|\mathbf{h}\|_2^2 = \min_{\mathbf{h}} J(\mathbf{h}) + \lambda \|\mathbf{h}\|_1 \quad s.t. \quad \|\mathbf{h}\|_2^2 = 1$$

Drawbacks:

- Non-convex problem due to the quadratic equality constraint; - L_1 norm penalizes larger coefficients more: the solution might be not equal to the L_0 norm.

Non-negative:

$$minJ(\mathbf{h}) + \lambda \|\mathbf{h}\|_{1}$$

s.t.
$$(h_1(a) =$$

Convex formulation

Drawbacks:

- amplitude distortion, peak of the anchor overly enhanced; - does not solve the L_1 penalty limitations.

Iterative weighted L_1 constraint (IL1C)

IL1C promotes sparsity and non-negativity by removing the previous drawbacks. It is an iterative method that at each iteration re-weights to improve sparsity.

Solve a sequence of sub-problems for

$$\mathbf{h}^{z} = arg minJ(\mathbf{h}) + \|\mathbf{h}\|_{1}, s.t.$$

No anchor constraint and penalizing more the small components

Each iteration consists of the minimization of a quadratic cost function + linear constraints: **convex problem** easily solved by standard optimization methods.

and to promote properties of the RIR: Sparsity and non-negativity.

entification for acoustic time-difference-of-arrival estimation." IEEE Workshop on applications of Signal Processing to Audio and Acoustics, 2007

$$z = 1, \dots, Z:$$

 $\mathbf{p}^{z^{\top}}\mathbf{h} = 1, \mathbf{h} > 0$

Weight update rule
$$\mathbf{p}^z = \mathbf{h}^{z-1}$$

SNR [dB]

Geometrical interpretation

 $A_{PUP} = \sum_{i=1}^{50} \frac{K - P_i}{50K}$ Percentage of <u>outliers (> 20 samples)</u>