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A method to extract Time Difference of Arrivals (TDOASs)
for room reflections:

* Estimation of TDOAs with no a priori information
(statistic of signals, walls/reflectors positions)

 Few parameters to tune.

» Fast, iterative solution that
promotes sparsity and
non-negativity.

» Tested with real signals
(speech and non-speech).
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The estimation of reliable TDOAs is a necessary step for room
reconstruction to recover the 3D position and orientation of
reflectors and the position of sound sources/microphones.

The cross-relation property of a Multi-Output system:

hn, (k) is the Room Impulse Response (RIR) between source location
and microphone m; location. For every couple of microphones we have
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Solution of the quadratic cost function J(h):

Include penalty terms in the cost function to avoid trivial solutions

and to promote properties of the RIR: Sparsity and non-negativity.

Sparse: mm J(h) + A||h||g s.t.

mm J(h) + Al|h||; s.t.

Drawbacks:

|h[z =1

|h[3 =1

- Non-convex problem due to the quadratic equality constraint;
- L, norm penalizes larger coefficients more: the solution might be not

equal to the L, norm.

Kowalczyk et al. "Blind System Identification Using Sparse Learning for TDOA Estimation of Room Reflections." Sig. Proc. Letters, 2013.

Non-negative:
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Convex formulation

Drawbacks:
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- amplitude distortion, peak of the anchor overly enhanced;
- does not solve the L, penalty limitations.

Lin et al. “Blind sparse-nonnegative (BSN) channelidentification for acoustic time-difference-of-arrival estimation.” IEEE Workshop on applications of Signal Processing to Audio and Acoustics, 2007

Reverberation
Time

Iterative weighted L, constraint (IL1C)

IL1C promotes sparsity and non-negativity by removing the previous
drawbacks. It is an iterative method that at each iteration re-weights to

improve sparsity.

Solve a sequence of sub-problems for

h* = argminJ(h) + |[h, st.p* h=1, h>0

z=1, ..., 24:
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Weight update rule
z __ hz—l
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ESTIMATION OF TDOA FOR ROOM REFLECTIONS BY ITERATIVE WEIGHTED L1 CONSTRAINT
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Geometrical interpretation

Non sparse
4 solution
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Quadratic cost function

with L, penalty

Let us make a variable change: h = w ©® h

with: w(k) =

Experiments
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Quadratic cost function with L, penalty and

weighted L, constraint @
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solution

- Simulated roomof5 x4 x6 m

2 microphones and a source randomly placed

RIRs simulated with the image method [Allen & Berkley,

1979]

Synthetic and real signals: white noise, rustle, male

voice

- Variable SNR: 0, 6, 14, 20, 40 dB
50 Monte Carlo simulations for each SNR

No anchor constraint and penalizing more the small components

Each iteration consists of the
minimization of a quadratic cost
function + linear constraints:
convex problem easily solved by
standard optimization methods.
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EIG: eigenvalue problem
[Tong et al. 1994]

LINN: anchor constraint
[Lin et al. 2007]

IL1P : iterative L1 penalty
[Croccoand Del Bue, 2015]

IL1C : iterative L1 constraint
[Croccoand Del Bue. 2016]

Speech signal

Results show that SVD based
solution fails while anchor
constraints do not achieve desired
sparsity. IL1P solution is a penalty
based solution over the L1
regulariser while IL1C achieves
the desired level of sparsity
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