

NMF-based Source Separation Utilizing Prior Knowledge on Encoding Vector

Kisoo Kwon*, Jong Won Shin[†] Nam Soo Kim*

*School of Electrical Engineering and INMC, Seoul National University, Seoul, Korea *School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju, Korea E-mail: kskwon@hi.snu.ac.kr, jwshin@gist.ac.kr, nkim@snu.ac.kr

Introduction

- Nonnegative matrix factorization (NMF) has shown impressive performance in the single channel source separation.
- In the training phase of NMF, the encoding matrix H^{train} is usually discarded after training.
- However, it bears useful information on how often each basis was utilized.
- In [K. Willson, 2008], the distribution of the logarithm of the encoding vector is modeled as a multivariate Gaussian distribution.
- Our analysis on *H*^{train} revealed that each row of this matrix was also highly sparse.
- In this paper, we **propose** the penalty terms based on the prior knowledge on H in the separation phase for NMFbased source separation.

NMF-based enhancement

- The magnitude spectra, KLD, Multiplicative update rule
- In training phase : obtain W_s and W_n from training DB.
- In enhancement phase

 $V(t) \approx WH(t)$ V(t) = |Y(t)|, $W = [W_s, W_n], \ H(t) = [H_s^T(t), H_n^T(t)]^T$

• Update
$$H(t)$$
 with fixed W (# of max iter. =30)
 $W^{T}(t) \frac{V(t)}{W(t)H(t)}$
 $H(t) \leftarrow H(t) \otimes \frac{W^{T}(t) \frac{V(t)}{W(t)H(t)}}{W^{T}(t)\mathbf{1}}$
1: a square matrix of suitable size with all elements equal to one
• After obtaining $H(t)$

- After obtaining H(t) $\hat{S}(t) = \boldsymbol{W}_{s}H_{s}(t), \quad \hat{N}(t) = \boldsymbol{W}_{n}H_{n}(t)$
- Gain function: $G(t) = \frac{|\hat{S}(t)|^2}{|\hat{S}(t)|^2 + |\hat{N}(t)|^2}$
- Enhanced signal at t-th frame X(t) = G(t)Y(t)

< The histograms of some rows of *H*^{train} corresponding to the most frequently and rarely used basis vectors.>

The shape of the histogram \rightarrow sparse distribution Sparse distributions \rightarrow a gamma or an exponential distributions

 $\boldsymbol{W}_i \in \mathbb{R}^{M \times r_i}$: the basis matrix of the source *i* $\boldsymbol{H}_{i}^{train} \in \mathbb{R}^{r_{i} \times N_{i}}$: the encoding matrix of the source *i* $V_i^{train} \in \mathbb{R}^{M \times N_i}$: the training DB matrix of the source *i* H_i $(t) \in \mathbb{R}^{r_i \times 1}$: the encoding vector of the source *i* at *t*-th frame $Model_i$: statistical model of H_i^{train}

Training phase

- The correlation coefficients among different components of the encoding vector were found not so significant. \rightarrow apply the independent exponential or gamma distributions
- Employ the gamma distribution for H_i^{train} The new objective function is given by $f(\mu) = D(V|W\mu) = v \nabla^r [(k-1)\log \mu]$ H_i

$$f(II) = D(v | w II) = \gamma_g \sum_{i=1}^{k} [(\kappa_i - I) \log II_i - \frac{1}{\theta_i}],$$

The MuR with KLD is now modified to

 $H_i \leftarrow H_i \frac{\sum_{k=1}^{M} \frac{W_{k,i}V_k}{\sum_{f=1}^{T} \frac{W_{k,f}H_f}{W_{k,i} + \gamma_q \left(\frac{1-k_i}{k_i} + \frac{1}{q}\right)}}$

Employ the exponential distribution for H_i^{train} The new objective function is given by $f(H) = D(V|WH) - \gamma_e \sum_{i=1}^r (\eta_i H_i),$ where η indicates the rate parameter. The MuR with KLD is now modified to $H_i \leftarrow H_i \frac{\sum_{k=1}^{M} \frac{W_{k,i} V_k}{\sum_{f=1}^{T} W_{k,f} H_f}}{\sum_{k=1}^{M} W_{k,i} + Y_0 \eta_i}$

Experiment

- Speech DB: TIMIT / noise DB : NOISEX-92
- 16kHz / 75% overlap / 512 FFT-size / r=128
- Measurement: PESO and SDR
- The penalty terms used in the experiments were standard: no constraint to the separation phase
- L1: L_1 norm of L with $n_i = 1$
- Iognormal: the negative log-likelihood of logH assuming that H follows lognormal distributions where logA denotes element-wise logarithm.
- **gamma**: the negative log-likelihood of H in which the PDF of H is modeled as an independent gamma distribution.
- exponential: the negative log-likelihood of H in which the PDF of H is modeled as an independent exponential distribution.

Conclusions

- We utilize the statistical information on the encoding vector obtained during the training.
- We propose an additional penalty term in the test phase. : based on a sparse distribution such as an exponential or a gamma distribution.
- Experiment results show that the proposed methods can enhance the source separation performance.