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Abstract

In this manuscript the application of a factor graph approach to the �ltering problem for a mixed
linear/nonlinear state-space model is investigated. In particular, after developing a factor graph for
the considered model, a novel approximate recursive technique for solving such a problem is derived
applying the sum-product algorithm and a speci�c scheduling procedure for message passing to this
graph. Then, the application of this technique, dubbed turbo �ltering for its conceptual resemblance
with turbo decoding of concatenated channel codes, to linear Gaussian systems is investigated. Numer-
ical results for speci�c state-space models show that turbo �ltering can achieve a good performance-
complexity tradeo�.



0.1 Introduction

The nonlinear �ltering problem consists of inferring the posterior distribution of the hidden state
of a nonlinear dynamic system from a set of past and present measurements [7]. It is well known
that, if a nonlinear dynamic system can be described by a hidden Markov model (HMM), a general
sequential procedure, based on the Bayes' rule and known as Bayesian �ltering, can be easily derived
for recursively computing the posterior distribution of the system current state [7]. Unluckily, Bayesian
�ltering is analytically tractable in few cases for the following two reasons [18]: a) one of the two update
steps it consists of requires multidimensional integration which, in most cases, does not admit a closed
form solution; b) the functional form of the required posterior distribution may not be preserved
over successive recursions. For this reason, sequential techniques employed in practice are based
on various analytical approximations and, consequently, generate a functional approximation of the
desired distribution. Such techniques are commonly divided into local and global methods on the basis
of the way posterior distributions are approximated [15, 21, 26]. Local methods, like extended Kalman
�ltering [23] and unscented �ltering [22] are computationally e�cient but may su�er from the problem
of error accumulation over time. On the contrary, global methods, like sequential Monte Carlo methods
[19, 20] (also known as particle �ltering, PF, methods [1, 2]) and point mass �ltering [27, 26] may
achieve high accuracy at the price, however, of an unmanageable complexity and numerical problems
when the dimension of system state is large [3]. These considerations have motivated various research
activities focused on the development of novel Bayesian �lters that can achieve high accuracy under
given computational constraints. Signi�cant results in this research area concern the use of the new
representations for complex distributions, like belief condensation �ltering [15], and the development
of novel �ltering techniques combining local and global methods, like marginalized particle �ltering
[6, 17] and other methods originating from it [21, 28]. It is also worth mentioning that marginalized
particle �ltering and its variants apply to systems represented by mixed linear/nonlinear models. In
fact, in these methods the availability of a 'linear' portion in system state (i.e., of one or more state
variables appearing linearly in system dynamics) is exploited; this allows to combine a global method
(e.g., particle �ltering) with a local technique (e.g., Kalman �ltering).

In this manuscript the problem of recursive Bayesian �ltering for mixed linear/nonlinear models is
revisited from a di�erent perspective. In fact, �rst a factor graph (FG) approach [5, 9] is employed
to develop a graphical representation of Bayesian �ltering for this class of models. Then, it is shown
that: a) applying the sum-product algorithm (SPA) [5, 9], together with a speci�c message scheduling
procedure, to this representation results in a novel type of iterative �ltering technique, called turbo
�ltering ; b) in the speci�c case of Gaussian systems turbo �ltering algorithms can be implemented
in a computationally e�cient way by combining a global technique (namely, particle �ltering) with a
local technique (in particular, a variant of Kalman �ltering). It is important to point that, even if
turbo �ltering for linear Gaussian systems combines local and global approximations similar to that
employed by marginalized particle �ltering, it is characterized by a substantially di�erent structure.
In fact, marginalized particle �ltering requires multiple parallel conditional �ltering updates, since
su�cient statistics are required for each particle trajectory, and these updates are carried out once in
each recursion. On the contrary, turbo �ltering employs a single Kalman �lter, run as many times as
the number of accomplished iterations in each recursion, with the aim of progressively re�ning state
estimates. For this reason, it can provide a signi�cant gain in terms of computational complexity with
respect to MPF when the size of the state vector for the considered system is large; our simulation
results, referring to speci�c systems, evidence that this result is achieved at the price of a small
performance loss.
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It is worth pointing out that turbo �ltering has been mainly inspired by the following ideas:

• A mixed linear/nonlinear Markov system can be represented as the concatenation of two in-
teracting subsystems, one governed by linear dynamics, the other accounting for a nonlinear
behavior; conceptually related (�nite state) Markov models can be found in data communica-
tions and, in particular, in concatenated channel coding (e.g., turbo coding [30]) and in coded
transmissions over inter-symbol interference channels for which turbo decoding methods [13, 30]
and turbo equalization techniques [25] have been developed, respectively1.

• Factor graphs play an essential role in the derivation and interpretation of turbo decoding and
equalization [5] (for instance, turbo decoding techniques emerge in a natural fashion from graph-
ical models of codes [10]).

• Both Kalman �ltering and particle methods can be viewed as message passing procedures on
factor graphs, as shown in [5, 9] and [4], respectively.

However, multiple connections of our approach with previous work on Bayesian inference on graphical
models and variational Bayes methods [29] can be also established. In fact, the relevant principle of
progressively re�ning distributional approximations through multiple iterations has been also exploited
in previous work about Bayesian inference on dynamic systems, and, in particular, in expectation
propagation in Bayesian networks [24] and in variational Bayesian �ltering [21].

The remaining part of this manuscript is organized as follows. A description of the mathematical
model for the considered mixed linear/nonlinear system is illustrated in Section 0.2. In Section 0.3 it
is proved how the �ltering problem for this system can be described by a proper FG which, unluckily,
is not cycle free. In Section 0.4 it is shown how the turbo �ltering method emerges in natural fashion
from applying SPA and proper message scheduling strategies (i.e., a loopy belief propagation strategy)
to this FG; moreover, speci�c implementations of this method for the class of linear Gaussian systems
are derived and the computational complexity of one of them is analysed in detail. Turbo �ltering for
speci�c linear Gaussian systems are compared with other �ltering techniques in terms of performance
and complexity in Section 0.5. Finally, some conclusions are o�ered in Section 0.6.

Notations: The probability density function (pdf) of a random vector R evaluated at point r is
denoted f(r); N (r; η,Σ) represents the the pdf of a Gaussian random vector R characterized by the
mean η and covariance matrix Σ evaluated at point r ; xi denotes the i-th element of the vector x.

0.2 System Model

In the following we focus on a discrete-time mixed linear/nonlinear Markov system [6], whose hidden
state in the t-th interval is represented by a D-dimensional real vector xt , [x0,t, x1,t, ..., xD−1,t]

T . We
assume that this vector can be partitioned as

xt =

[(
x
(L)
t

)T
,
(
x
(N)
t

)T]T
, (1)

where x
(L)
t , [x

(L)
0,t , x

(L)
1,t , ..., x

(L)
DL−1,t]

T (x(N)
t , [x

(N)
0,t , x

(N)
1,t , ..., x

(L)
DN−1,t]

T ) is the so called linear (non-
linear) component of xt (1), with DL < D (DN = D −DL). This partitioning of xt is based on the
following simple rule. First, x

(L)
t is identi�ed as that portion of xt (1) characterized by the following

two properties:
1Note that these classes of algorithms can be seen as speci�c applications of the so called turbo principle [11]
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1. Conditionally linear dynamics - This means that its update equation, conditioned on x
(N)
t , is

linear; in other words, we have that

x
(L)
t+1 = A

(L)
t x

(L)
t + f

(L)
t

(
x
(N)
t

)
+ w

(L)
t , (2)

where f
(L)
t (x) is a time-varying DL-dimensional di�erentiable function, A

(L)
t is a time-varying

DL ×DL real matrix and w
(L)
t is the t-th element of the process noise sequence

{
w

(L)
l

}
, which

consists of DL- dimensional independent and identically distributed noise vectors.

2. Conditionally linear (or almost linear) dependence of all the available measurements on it - In
other words, these quantities, conditioned on x

(N)
t , exhibit a linear dependence on x

(L)
t (addi-

tional details about this model feature are provided below).

Then, x
(N)
t is generated by putting together all the components of xt that do not belong to x

(L)
t .

For this reason, generally speaking, this vector is characterized by at least one of the following two
properties:

a) Nonlinear dynamics - In particular, the update equation

x
(N)
t+1 = f

(N)
t

(
x
(N)
t

)
+ A

(N)
t x

(L)
t + w

(N)
t (3)

is assumed, where A
(N)
t is a time-varying DL ×DN real matrix, f

(N)
t (x) is a time-varying DN -

dimensional di�erentiable function and w
(N)
t is the t-th element of the process noise sequence{

w
(N)
l

}
, which consists of DN -dimensional independent and identically distributed noise vectors

and is statistically independent of
{

w
(L)
l

}
.

b) A nonlinear dependence of all the available measurements on it (further details are provided below).

In the following Section we focus on the so-called �ltering problem, which concerns the evaluation of
the posterior probability density function (pdf) f (xt |y1:t ) at an instant t > 1, given a) the pdf f (x1)
referring to the system state in the �rst observation interval and b) the t ·P -dimensional measurement
vector

y1:t =
[
yT
1 ,y

T
2 , ...,y

T
t

]T
, (4)

where yl , [y0, y1, ..., yP−1]
T denotes the P -dimensional real vector collecting all the noisy measure-

ments available at time t. As already mentioned above, the measurement vector yl exhibits a linear

(nonlinear) dependence on x
(L)
t (x(N)

t ); for this reason, in the following it is assumed that

yl = hl

(
x
(N)
t

)
+ Cl x

(L)
t + el, (5)

where Cl is a time-varying P × DL real matrix, hl

(
x
(N)
t

)
is a time-varying P -dimensional function

(further details about this function are provided below) and el the l-th element of the measurement
noise sequence {el} consisting of P -dimensional independent and identically distributed noise vectors.
As it will become clearer in the following Section, it is useful to partition the vector yl (5) as

yl =

[(
y
(L)
l

)T
,
(
y
(NL)
l

)T
,
(
y
(N)
l

)T]T
, (6)
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where the PL-dimensional vector y
(L)
l , [y

(L)
0,l , y

(L)
1,l , ..., y

(L)
PL−1,l]

T (PN -dimensional vector y
(N)
l ,

[y
(N)
0,t , y

(N)
1,t , ..., y

(N)
PN−1,l]

T ) depends on x
(L)
l (x(N)

l ) only, whereas, generally speaking, the PNL-dimensional

vector y
(NL)
l , [y

(NL)
0,l , y

(NL)
1,l , ..., y

(NL)
PNL−1,l]

T (with PNL = P −PN −PL) exhibits a mixed dependence,

i.e. a dependence on both x
(L)
l and x

(N)
l ; in other words, we have that2

y
(L)
l = C

(L)
l x

(L)
l + e

(L)
l , (7)

y
(NL)
l = h

(NL)
l

(
x
(N)
l

)
+ C

(NL)
l x

(L)
l + e

(NL)
l (8)

and

y
(N)
l = h

(N)
l

(
x
(N)
l

)
+ e

(N)
l , (9)

where h
(N)
l

(
x
(N)
l

)
(h(NL)

l

(
x
(N)
l

)
) is a PN -dimensional (PNL-dimensional) function, and C

(L)
l (C(NL)

l )

is a time-varying PL ×DL (PNL ×DL) real matrix, and
{

e
(L)
l

}
,
{

e
(N)
l

}
and

{
e
(NL)
l

}
are mutually

independent noise processes. Note that (7)-(9) implicitly rely on the assumptions that el results from

the ordered concatenation of e
(L)
l , e

(N)
l and e

(NL)
l , and that the matrix Cl and the function hl

(
x
(N)
l

)
are structured as

Cl =

 C
(L)
l 0PL×DN

C
(NL)
l 0PNL×DN

0PN×DL
0PN×DN

 (10)

and

hl

(
x
(N)
l

)
=

[
0T
PN
,
(
h
(NL)
l

(
x
(N)
l

))T
,
(
hN
l

(
x
(N)
l

))T]T
, (11)

respectively, for any l; here 0N (0N×M ) represents a N -dimensional (N×M) null vector (null matrix).

In the following it is also assumed that h
(NL)
l

(
x
(N)
l

)
is PNL-dimensional di�erentiable function and

that the measurement noise sequences {eL,l}, {eN,l} and {eNL,l} are mutually independent, and are

independent of
{

w
(N)
l

}
and

{
w

(L)
l

}
.

0.3 Representation of the Filtering Problem via Factor Graphs

Generally speaking, the �ltering problem for a system described by the Markov model f (xt+1 |xt ) and
the observation model f (yt |xt ) concerns the computation of the conditional pdf f (xt |y1:t ) (i.e., the
posterior pdf of the state xt given the measurement vector y1:t (4)) for t ≥ 1 by means of a recursive
procedure [7]. It is well known that, if the pdf f (x1) is known, a general Bayesian recursive procedure
can be employed; its l-th recursion (with l = 1, 2, ..., t) consists of the following two steps:

2Note that this partitioning of the measurement vector yl (6) has been inspired by the way the noisy data available at
the output of a communication channel are processed by a turbo decoder for a couple of parallely concatenated channel
codes. In fact, in that case the noisy data are partitioned in three blocks, one common to the two decoders for the
constituent channel codes, the other two feeding each a distinct decoder (e.g., see [30, Fig. 6]).
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• Measurement update - Given the pdf f
(
xl

∣∣y1:(l−1)

)
(evaluated in the last step of the previous

recursion3) and the present measurement vector yl, the conditional pdf f (xl |y1:l ) is computed
as

f (xl |y1:l ) = f
(
xl

∣∣y1:(l−1)

)
f (yl |xl )

1

f
(
yl

∣∣y1:(l−1)

) , (12)

where
f
(
yl

∣∣y1:(l−1)

)
=

ˆ
f (yl |xl ) f

(
xl

∣∣y1:(l−1)

)
dxl. (13)

• Time update - The pdf f (xl |y1:l ) (12) generated by the measurement update is exploited to
compute the pdf

f (xl+1 |y1:l ) =

ˆ
f (xl+1 |xl ) f (xl |y1:l ) dxl, (14)

which represents a prediction about the future state xl+1.

It is important to point out that: 1) the term 1/f
(
yl

∣∣y1:(l−1)

)
appearing in the right hand side (RHS)

of (12) represents a normalization factor ; 2) both (13) and (14) require integration with respect to
xl and this may represent a formidable task when the dimensionality of xl is large and/or the pdfs
appearing in the integrands are not Gaussian; 3) this recursive procedure lends itself to be e�ciently
represented by a message passing algorithm over a proper factor graph (FG) [5]. The derivation of the
FG mentioned in the last point rely on the fact that the a posteriori pdf f (xt |y1:t ) has the same FG
as the joint pdf f (xt,y1:t) (see [5, Sec. II]) and the last pdf can be computed recursively through a
procedure similar to that illustrated above, but in which the measurement update (12) and the time
update (14) are replaced by

f (xl,y1:l) = f
(
xl,y1:(l−1)

)
f (yl |xl ) , (15)

and
f (xl+1,y1:l) =

ˆ
f (xl+1 |xl ) f (xl,y1:l) dxl, (16)

respectively, so that the evaluation of the above mentioned normalization factor is no more required.
In fact, eqs. (15) and (16) involve only products of pdfs and sums (i.e., integration) of products, so
that they can be represented by means of the FG enclosed in the dashed rectangle of Fig. 1 (where,
following [5], a simpli�ed notation is used for the involved pdfs). Since this FG is cycle free, the pdf
f (xt,y1:t) can be evaluated applying the well known SPA to it, i.e. developing a proper mechanism
for passing probabilistic messages along this FG (the �ow of messages is indicated by red arrows in
Fig. 1). In fact, if the input message min,l (xl) = f

(
xl,y1:(l−1)

)
enters this FG, the message going

out of the equality node is given by [5]

my,l (xl) = min,l (xl) f (yl |xl ) , (17)

so that my,l (xl) = f (xl,y1:l) (see (15)); then, the message emerging from the function node referring
to the pdf f (xl+1 |xl ) is given by [5]

mout,l (xl+1) =

ˆ
f (xl+1 |xl )my,l (xl) dxl, (18)

3Note that in the �rst recursion (i.e., for l = 1) f
(
xl

∣∣y1:(l−1)

)
= f (x1 |y1:0 ) = f (x1) and f

(
yl

∣∣y1:(l−1)

)
=

f (y1 |y1:0 ) = f (y1), so that f (x1 |y1 ) = f (x1) f (y1 |x1 ) /f (y1).
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

lx

/l l
fy x

ly

1 /l l
f

x x

1lx



1x

1 1/fy x

1y

2 1/fx x

2x
1

fx



tx

/t t
fy x

ty

  1t x

Output message 

1:,t t
fx y

 ,in l lm x

 ,y l lm x

   , 1 , 1 1out l l in l lm m  x x

Figure 1: Factor graph for the evaluation of the pdf f (xt,y1:t) (the subgraph representing (15) and
(16) is enclosed in the dashed rectangle). The SPA message �ow is indicated by red arrows.

so that mout,l (xl+1) = f (xl+1 |y1:l ) = min,l+1 (xl+1) (see (16)). Consequently, the pdf f (xt,y1:t)
(and, up to a scale factor, the pdf f (xt |y1:t )) results from the application of the SPA to the overall FG
shown in Fig. 1 and originating from the ordered concatenation of multiple subgraphs, each structured
like the one contained in the rectangular box of the same �gure. In this case, the �ow of messages
produced by the SPA proceeds from left to right, i.e. the pdf f (xt,y1:t) is generated by a forward
only message passing. In principle, the desired pdf f (xt,y1:t) is computed as the product between two
messages, one for each direction, reaching the rightmost edge of the FG; one of the incoming messages
for that edge (denoted ←−µ (xt) in Fig. 1), however, is the constant function ←−µ (xt) = 1.

Unluckily, as the size D of xt (1) gets large, the computational burden associated with (12)-
(14) becomes unmanageable. In principle, a substantial complexity reduction could be achieved by

decoupling4 the �ltering problem for x
(L)
t from that for x

(N)
t , i.e. the evaluation of f

(
x
(L)
t |y1:t

)
from

that of f
(
x
(N)
t |y1:t

)
. In fact, this approach potentially provides the following two bene�ts: a) a

given �ltering problem is turned into a couple of �ltering problems of smaller dimensionality and b)
some form of computationally e�cient standard �ltering (e.g., Kalman or extended Kalman �ltering)
can be hopefully exploited for the linear portion x

(L)
t of the state vector xt. These fundamental ideas

have been exploited in devising marginalized particle �ltering [2, 6]; as it will become clearer in the
following Section, they are also employed in the derivation of turbo �ltering, which results, however,
from the application of di�erent theoretical tools to the considered �ltering problem. Before analysing
this derivation, the measurement and state models on which turbo �ltering relies need to be clearly
de�ned; for this reason, these models are analysed in detail in the following part of this Section. To
begin, let us concentrate on the models involved in the �ltering problem for x

(L)
t , i.e. the evaluation

f
(
x
(L)
t |y1:t

)
, under the assumption that the nonlinear portion x

(N)
l of the system state is known for

4Note that the coupling of the �ltering problem for x
(L)
l with that for x

(N)
l is due not only to the structure of the

update equations (2) and (3), but also to the measurement vector y
(NL)
l (8), that exhibits a mixed dependence on the

two components of the state vector xl (1).
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any l. In this case, the evaluation of the pdf x
(L)
l can bene�t not only from the knowledge of y

(L)
l (7),

but also from that of a) the new measurement (see (8))

ỹ
(L)
l , y

(NL)
l − h

(NL)
l

(
x
(N)
l

)
= C

(NL)
l x

(L)
l + e

(NL)
l (19)

and b) the quantity (see (3))

z
(L)
l , x

(N)
l+1 − f

(N)
l

(
x
(N)
l

)
= A

(N)
l x

(L)
l + w

(N)
l , (20)

which can be interpreted as a pseudo-measurement [6], since it does not originate from real measure-
ments, but from the constraints expressed by the state equation (3). This leads to considering the
overall observation model

f
(
y
(L)
l , ỹ

(L)
l , z

(L)
l

∣∣∣x(L)
l

)
= f

(
y
(L)
l

∣∣∣x(L)
l

)
f
(
ỹ
(L)
l

∣∣∣x(L)
l

)
f
(
z
(L)
l

∣∣∣x(L)
l

) (21)

for x
(L)
l , where

f
(
y
(L)
l

∣∣∣x(L)
l

)
= f

(
e
(L)
l

)∣∣∣
e
(L)
l =y

(L)
l −C

(L)
l x

(L)
l

, (22)

f
(
ỹ
(L)
l

∣∣∣x(L)
l

)
= f

(
e
(NL)
l

)∣∣∣
e
(NL)
l =ỹ

(L)
l −C

(NL)
l x

(L)
l

(23)

and
f
(
z
(L)
l

∣∣∣x(L)
l

)
= f

(
w

(N)
l

)∣∣∣
w

(N)
l =z

(L)
l −A

(N)
l x

(L)
l

. (24)

If the observation model (21) and the state model (see (2))

f
(
x
(L)
l+1

∣∣∣x(L)
l ,x

(N)
l

)
= fw(L)

(
x
(L)
l+1 − f

(L)
l

(
x
(N)
l

)
−A

(L)
l x

(L)
l

) (25)

are adopted for x
(L)
l , the graph shown in Fig. 2 can be used, similarly as the FG shown in the dashed

rectangle of Fig. 1, to describe a new recursion leading to the evaluation of f
(
x
(L)
t

∣∣∣y(L)
1:t , ỹ

(L)
1:t , z

(L)
1:t

)
,

under the assumption that the couple
(
x
(N)
l ,x

(N)
l+1

)
is known for any l. Is important to point out that

that:

• The graph shown in Fig. 2 is not a standard FG, but a mixed one, since it includes two
subsystems5 (represented by dashed rectangles) which do not refer to density factorizations;

in fact, they represent the transformations from y
(NL)
l to ỹ

(L)
l and from the couple

(
x
(N)
l ,x

(N)
l+1

)
to z

(L)
l (see (19) and (20), respectively). As it will become clear later, this has to be carefully

kept into account when deriving message passing algorithms.
5The presence of oriented edges indicates the existence of constraints in the message �ow occurring in the represented

graph.
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=

( )L
lx

( ) ( ) ( ), /L L L
l l l

f
y y xɶ

( )L
ly

( ) ( ) ( )
1 / ,L L N

l l l

f
+x x x

( )
1

L
l+x

( )L
lyɶ

=

( ) ( )/L L
l l

f
z x

( )L
lz

( )NL
ly

( )N
lx

( ) ( )NL L
l l→y yɶ ( ) ( ) ( )

1,N N L
l l l+ →x x z

( )
1

N
l+x

= =

Figure 2: Factor graph associated with the observation model (21) and the state model (25).

• Generally speaking, the evaluation of the conditional pdf f
(
z
(L)
l

∣∣∣x(L)
l

)
requires the knowledge

of the joint pdf of x
(N)
l+1 and x

(N)
l (see (20)), which can be evaluated as

f
(
x
(N)
l ,x

(N)
l+1

)
= f

(
x
(N)
l

)ˆ
f
(
x
(N)
l+1

∣∣∣x(N)
l ,x

(L)
l

)
f
(
x
(L)
l

)
dx

(L)
l , (26)

where f
(
x
(N)
l+1

∣∣∣x(N)
l ,x

(L)
l

)
is given by (33) (see below).

The same line of reasoning can be followed for the models involved in the �ltering problem for x
(N)
l

under the assumption that the linear portion x
(L)
l of the system state is known for any l. In fact, in

this case the new measurement (see (8))

ỹ
(N)
l , y

(NL)
l −C

(NL)
l x

(L)
l = h

(NL)
l

(
x
(N)
l

)
+ e

(NL)
l (27)

and the pseudo-measurement (see (2))

z
(N)
l , x

(L)
l+1 −A

(L)
l x

(L)
l = f

(L)
l

(
x
(N)
l

)
+ w

(L)
l (28)

are de�ned. This leads to the overall observation model

f
(
y
(N)
l , ỹ

(N)
l , z

(N)
l

∣∣∣x(N)
l

)
= f

(
y
(N)
l

∣∣∣x(N)
l

)
f
(
ỹ
(N)
l

∣∣∣x(N)
l

)
f
(
z
(N)
l

∣∣∣x(N)
l

)
(29)

for x
(N)
l , where

f
(
y
(N)
l

∣∣∣x(N)
l

)
= f

(
e
(N)
l

)∣∣∣
e
(N)
l =y

(N)
l −h

(N)
l

(
x
(N)
l

) , (30)

f
(
ỹ
(N)
l

∣∣∣x(N)
l

)
= f

(
e
(NL)
l

)∣∣∣
e
(NL)
l =ỹ

(N)
l −h

(L)
l

(
x
(N)
l

) , (31)
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Figure 3: Factor graph associated with the observation model (29) and the state model (33).

and
f
(
z
(N)
l

∣∣∣x(N)
l

)
= f

(
w

(L)
l

)∣∣∣
w

(L)
l =z

(N)
l −f

(L)
l

(
x
(N)
l

) . (32)

If the observation model (29) and the state model

f
(
x
(N)
l+1

∣∣∣x(N)
l ,x

(L)
l

)
= fwN

(
x
(N)
l+1 − f

(N)
l

(
x
(N)
l

)
−A

(N)
l x

(L)
l

) (33)

are adopted for x
(N)
l , the graph shown in Fig. 3 can be drawn, similarly as that shown in Fig. 2, to

describe a new recursion leading to the evaluation of f
(
x
(N)
t

∣∣∣y(N)
1:t , ỹ

(N)
1:t , z

(N)
1:t

)
, under the assumption

that the couple (x
(L)
l , x

(L)
l+1) is known for any l. Note also that, similarly to what has been explained

earlier about the conditional pdf f
(
z
(L)
l

∣∣∣x(L)
l

)
, the evaluation of the conditional pdf f

(
z
(N)
l

∣∣∣x(N)
l

)
requires the knowledge of the joint pdf of x

(L)
l+1 and x

(L)
l (see (28)), which can be evaluated as

f
(
x
(L)
l ,x

(L)
l+1

)
= f

(
x
(L)
l

)ˆ
f
(
x
(L)
l+1

∣∣∣x(L)
l ,x

(N)
l

)
f
(
x
(N)
l

)
dx

(N)
l , (34)

where f
(
x
(L)
l+1

∣∣∣x(L)
l ,x

(N)
l

)
is given by (25).

Merging the FG shown in Fig. 2 with that of Fig. 3 (i.e., connecting the half edges labelled by the
same state variables) produces the FG illustrated in Fig. 4. This graph, on which the l-th recursion
of the algorithm proposed in this manuscript is based, is not cycle-free. For this reason, applying the
SPA to it unavoidably leads to iterative techniques producing approximate results [9].

Finally, it is important to point out that the FG representation that can be adopted for deriving
new �ltering techniques in the considered problem is not unique; this is due to the fact that the overall
FG of Fig. 1 can be partitioned into di�erent subgraphs. For instance, the subgraphs appearing in
Fig. 2 (Fig. 3) can be modi�ed by removing the portion referring to the pdf f

(
y
(N)
l , ỹ

(N)
l

∣∣∣x(N)
l

)
(f
(
y
(L)
l , ỹ

(L)
l

∣∣∣x(L)
l

)
), i.e., their leftmost portion, and by appending a new portion referring to the

9
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Figure 4: Factor graph resulting from the combination of the graphs shown in Figs. 2 and 3.
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Figure 5: Possible FG representation that can be adopted as an alternative to the FG shown in 4.

pdf f
(
y
(N)
l+1 , ỹ

(N)
l+1

∣∣∣x(N)
l+1

)
(f
(
y
(L)
l+1, ỹ

(L)
l+1

∣∣∣x(L)
l+1

)
); then, merging these new subgraphs produces the FG

shown in Fig. 5, which, as shown in the following, leads to di�erent �ltering techniques.

0.4 Message Passing in Turbo Filtering

In this Section the turbo �ltering method is illustrated �rst in its most general form. Then, a speci�c
implementation of this method, developed for the case of linear Gaussian systems, is devised and its
computational complexity is assessed.

0.4.1 Derivation of the turbo �ltering technique

As already mentioned in the previous Section, the turbo �ltering technique developed in this manuscript
results from the application of the SPA to the graph shown in Fig. 4. However, since this graph contains
a cycle, di�erent options should be considered for message scheduling [9, 10]. The �rst scheduling
procedure adopted here has been inspired by marginalized particle �ltering, as evidenced by the graph
shown in Fig. 7; the message �ow occurring in the k-th iteration within the l-th recursion is illustrated

11
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Figure 6: Factor graph resulting from a new combination of the graphs associated with the observation
models (21) and (29), and the state models (25) and (33).
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below for the considered graph (here k = 1, 2, ..., Nit, where Nit denotes the overall number of iterations
accomplished in each recursion). In fact, in each iteration, on the basis of the message �ow illustrated
in this Figure, the following tasks are sequentially accomplished: 1) measurement update for x

(N)
l ; 2)

measurement update for x
(L)
l ; 3) time update for both x

(L)
l and x

(N)
l . It is important to point out

that:

• The l-th recursion is fed by the messages ~ml

(
x(L)

)
and ~ml

(
x(N)

)
, which have been generated in

the previous (i.e., in the (l− 1)-th) recursion and represent, up to a scale factor, approximations

of f
(
x
(L)
l

∣∣y1:(l−1)

)
and f

(
x
(N)
l

∣∣y1:(l−1)

)
, respectively. These messages represent the a priori

information available to the l-th recursion. For this reason, generally speaking, at the beginning
of the �rst recursion (i.e., for l = 1)

~m1

(
x(L)

)
=

ˆ
f (x1) dx

(N)
1 (35)

and
~m1

(
x(N)

)
=

ˆ
f (x1) dx

(L)
1 (36)

must be selected.

• The l-th recursion produces the new messages ~ml+1

(
x(L)

)
and ~ml+1

(
x(N)

)
at the end of its last

iteration.

• In any iteration,
←−ml+1

(
x(L)

)
=←−ml+1

(
x(N)

)
= 1 (37)

is assumed, since no information comes from the next recursion (it is like having a couple of half
edges, one associated with x

(L)
l+1, the other one with x

(N)
l+1).

The proposed iterative technique consists of an initialization procedure followed by a message passing
procedure. A detailed description of both procedures is provided below for the l-th recursion.

Message passing procedure - This procedure consists of an ordered sequence of steps, in which
the messages labelling the arrows shown in Fig. 7 are evaluated; a general description of each step
is provided below for the k-th iteration; additional mathematical details are provided in the next
Paragraph for the case of a linear Gaussian system.

1. Firstmeasurement update for x
(N)
l - This step requires the knowledge of the message ~m(k−1)

4

(
x
(L)
l

)
computed in the previous iteration; in fact, this message is exploited to generate, together with the
measurement vector y

(NL)
l (8), the message ~m(k)

(
ỹ
(N)
l

)
(see (27)). Then, the last message is em-

ployed, together with the measurement vector y
(N)
l (9) and a portion of the observation model (29)

(see, in particular, (30) and (31)), to evaluate

~m
(k)
1

(
x
(N)
l

)
=
´
~m(k)

(
ỹ
(N)
l

)
f
(
y
(N)
l , ỹ

(N)
l

∣∣∣x(N)
l

)
dỹ

(N)
l

= f
(
y
(N)
l

∣∣∣x(N)
l

) ´
~m(k)

(
ỹ
(N)
l

)
f
(
ỹ
(N)
l

∣∣∣x(N)
l

)
dỹ

(N)
l .

(38)

Finally, multiplying ~m(k)
1

(
x
(N)
l

)
by the a priori information ~ml

(
x(N)

)
yields

~m
(k)
2

(
x
(N)
l

)
= ~m

(k)
1

(
x
(N)
l

)
~ml

(
x(N)

)
. (39)
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2. Secondmeasurement update for x
(N)
l - In this step the messages ~m(k−1)

4

(
x
(L)
l

)
and ~m(k−1)

6

(
x
(L)
l+1

)
can be exploited to evaluate any �rst order moment (e.g., the mean) of z

(N)
l (28)). However, the eval-

uation of any second order moment (i.e., the covariance matrix) or of the pdf of z
(N)
l (28) requires the

knowledge of the joint pdf x
(L)
l+1 and x

(L)
l , which, in the considered iteration, can be approximated as

(see (34))

f
(
x
(L)
l ,x

(L)
l+1

)
∼= fl,k

(
x
(L)
l ,x

(L)
l+1

)
, ~m

(k−1)
4

(
x
(L)
l

) ´
f
(
x
(L)
l+1

∣∣∣x(L)
l ,x

(N)
l

)
~m

(k−1)
4

(
x
(N)
l

)
dx

(N)
l ,

(40)

so that ~m(k−1)
4

(
x
(N)
l

)
is also needed. Then, given ~m(k)

(
z
(N)
l

)
and the observation model (32), the

message

~m
(k)
3

(
x
(N)
l

)
=

ˆ
~m(k)

(
z
(N)
l

)
f
(
z
(N)
l

∣∣∣x(N)
l

)
dz

(N)
l (41)

is computed. Finally, multiplying this message by ~m
(k)
2

(
x
(N)
l

)
(39) gives

~m
(k)
4

(
x
(N)
l

)
= ~m

(k)
3

(
x
(N)
l

)
~m

(k)
2

(
x
(N)
l

)
, (42)

which represents the overall output of the two measurement updates referring to x
(N)
l .

3. First measurement update for x
(L)
l - In this step message ~m

(k)
4

(
x
(N)
l

)
(42) is exploited to

compute, together with the measurement vector y
(NL)
l (8), the message ~m(k)

(
ỹ
(L)
l

)
(see (19)). Then,

the last message is employed, together with the measurement vector y
(L)
l (7) and a portion of the

observation model (21) (see, in particular, (22) and (23)), to evaluate

~m
(k)
1

(
x
(L)
l

)
=
´
~m(k)

(
ỹ
(L)
l

)
f
(
y
(L)
l , ỹ

(L)
l

∣∣∣x(L)
l

)
dỹ

(L)
l

= f
(
y
(L)
l

∣∣∣x(L)
l

) ´
~m(k)

(
ỹ
(L)
l

)
f
(
ỹ
(L)
l

∣∣∣x(L)
l

)
dỹ

(L)
l .

(43)

Finally, multiplying ~m(k)
1

(
x
(L)
l

)
by the a priori information ~ml

(
x(L)

)
yields

~m
(k)
2

(
x
(L)
l

)
= ~m

(k)
1

(
x
(L)
l

)
~ml

(
x(L)

)
. (44)

4. Second measurement update for x
(L)
l - Similarly as step 2., in this step the messages ~m(k)

4

(
x
(N)
l

)
and ~m

(k−1)
6

(
x
(N)
l+1

)
can be exploited to evaluate any �rst order moment (e.g., the mean) of z

(L)
l (20)).

However, the evaluation of any second order moment (i.e., the covariance matrix) or of the pdf of z
(L)
l

(20) requires the knowledge of the joint pdf x
(N)
l+1 and x

(N)
l , which, in the considered iteration, can be

approximated as (see (26))

f
(
x
(N)
l ,x

(N)
l+1

)
∼= f̃l,k

(
x
(N)
l ,x

(N)
l+1

)
, ~m

(k)
4

(
x
(N)
l

) ´
f
(
x
(N)
l+1

∣∣∣x(N)
l ,x

(L)
l

)
~m

(k−1)
4

(
x
(L)
l

)
dx

(L)
l ,

(45)
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so that ~m(k−1)
4

(
x
(L)
l

)
is also required. Then, given ~m(k)

(
z
(L)
l

)
and the observation model (24), the

message

~m
(k)
3

(
x
(L)
l

)
=

ˆ
~m(k)

(
z
(L)
l

)
f
(
z
(L)
l

∣∣∣x(L)
l

)
dz

(L)
l (46)

is computed. Finally, multiplying the last message by ~m
(k)
2

(
x
(L)
l

)
(44) yields

~m
(k)
4

(
x
(L)
l

)
= ~m

(k)
3

(
x
(L)
l

)
~m

(k)
2

(
x
(L)
l

)
, (47)

which represents the overall output of the two measurement updates referring to x
(L)
l .

5. Time update for x
(N)
l and x

(L)
l - In the time update step for x

(N)
l the message

~m
(k)
5

(
x
(N)
l+1

)
=
´ ´

f
(
x
(N)
l+1

∣∣∣x(L)
l ,x

(N)
l

)
·~m(k)

4

(
x
(N)
l

)
~m

(k)
4

(
x
(L)
l

)
dx

(L)
l dx

(N)
l .

(48)

is computed. Then, multiplying this message by ←−ml+1

(
x(N)

)
(see (37)) gives

~m
(k)
6

(
x
(N)
l+1

)
= ~m

(k)
5

(
x
(N)
l+1

)
←−ml+1

(
x(N)

)
= ~m

(k)
5

(
x
(N)
l+1

)
.

(49)

Similarly, the time update step for x
(L)
l aims at evaluating the messages

~m
(k)
5

(
x
(L)
l+1

)
=
´ ´

f
(
x
(L)
l+1

∣∣∣x(L)
l ,x

(N)
l

)
·~m(k)

4

(
x
(L)
l

)
~m

(k)
4

(
x
(N)
l

)
dx

(L)
l dx

(N)
l

(50)

and (see (37))

~m
(k)
6

(
x
(L)
l+1

)
= ~m

(k)
5

(
x
(L)
l+1

)
←−ml+1

(
x(L)

)
= ~m

(k)
5

(
x
(L)
l+1

)
.

(51)

Note that the time update for x
(N)
l and that for x

(L)
l can be carried out in parallel, since they do not

interact.
6. Stop or get ready for the next recursion - After completing the previous step, the value of the

iteration index k is compared with Nit. If k < Nit, the index k is increased by one and the next
iteration starts (this means going back to step 1. of the message passing procedure). Otherwise, if
k = Nit, the messages

~ml+1

(
x(N)

)
= ~m

(Nit)
5

(
x
(N)
l+1

)
(52)

and
~ml+1

(
x(L)

)
= ~m

(Nit)
5

(
x
(L)
l+1

)
(53)

are generated. In this case, if l < t, the recursion index l is increased by one and the initialization
procedure for the next iteration is started; otherwise, if l = t, the turbo �ltering procedure is over.
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Initialization procedure - In principle, starting the message �ow in the �rst iteration (corre-

sponding to l = 1) requires the knowledge of the messages ~m(0)
4

(
x
(L)
l

)
(step 1 and 2), ~m(0)

4

(
x
(N)
l

)
(step 2), ~m(0)

6

(
x
(L)
l+1

)
(or, equivalently, ~m(0)

5

(
x
(L)
l+1

)
; see step 2) and ~m

(0)
6

(
x
(N)
l+1

)
(or, equivalently,

~m
(0)
5

(
x
(N)
l+1

)
; see step 4). Note that, on the one hand, no information is available about x

(L)
l+1 and x

(N)
l+1

in the initialization; for this reason,

~m
(0)
6

(
x
(L)
l+1

)
= ~m

(0)
5

(
x
(L)
l+1

)
= ~m

(0)
6

(
x
(N)
l+1

)
= ~m

(0)
5

(
x
(N)
l+1

)
= 1 (54)

and
~m(1)

(
z
(L)
l

)
= ~m(1)

(
z
(N)
l

)
= 1 (55)

are selected. On the other hand, the only information available about x
(L)
l (x(N)

l ) is expressed by
~ml

(
x(L)

)
(~ml

(
x(N)

)
) which, refers to the the prediction x

(L)
l/l−1 (x

(N)
l/l−1 ) of x

(L)
l (x(N)

l ) based on past
measurements (further details about this are provided in the following Paragraph), so that

~m
(0)
4

(
x
(L)
l

)
= ~ml

(
x(L)

)
(56)

and
~m

(0)
4

(
x
(N)
l

)
= ~ml

(
x(N)

)
(57)

are chosen.

0.4.2 Turbo �ltering for linear Gaussian systems

Let us analyse now the application of the general procedure illustrated in the previous Paragraph to
the speci�c class of linear Gaussian systems. For this reason, in this Paragraph we assume that: a){

w
(L)
l

}
(
{

w
(N)
l

}
) is a Gaussian random process and all its elements have zero mean and covariance

C
(L)
w (C(N)

w ) for any l; b) {e(L)
l }, {e

(N)
l } and {e(NL)

l } are Gaussian random processes having zero mean
and covariance matrices C

(L)
e , C

(N)
e and C

(NL)
e , respectively, for any l. Under these assumptions,

(22)-(25) can be rewritten as

f
(
y
(L)
l

∣∣∣x(L)
l

)
= N

(
y
(L)
l ;C

(L)
l x

(L)
l ,C(L)

e

)
, (58)

f
(
ỹ
(L)
l

∣∣∣x(L)
l

)
= N

(
ỹ
(L)
l ;C

(NL)
l x

(L)
l ,C(NL)

e

)
, (59)

f
(
z
(L)
l

∣∣∣x(L)
l

)
= N

(
z
(L)
l ;A

(N)
l x

(L)
l ,C(N)

w

)
(60)

and
f
(
x
(L)
l+1

∣∣∣x(L)
l ,x

(N)
l

)
= N

(
x
(L)
l+1; f

(L)
l

(
x
(N)
l

)
+ A

(L)
l x

(L)
l ,C

(L)
w

)
,

(61)

respectively. Similarly, (30)-(33) turn into

f
(
y
(N)
l

∣∣∣x(N)
l

)
= N

(
y
(N)
l ;h

(N)
l

(
x
(N)
l

)
,C(N)

e

)
, (62)
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f
(
ỹ
(N)
l

∣∣∣x(N)
l

)
= N

(
ỹ
(N)
l ;h

(NL)
l

(
x
(N)
l

)
,C(NL)

e

)
(63)

f
(
z
(N)
l

∣∣∣x(N)
l

)
= N

(
z
(N)
l ; f

(L)
l

(
x
(N)
l

)
,C(L)

w

)
. (64)

and
f
(
x
(N)
l+1

∣∣∣x(N)
l ,x

(L)
l

)
= N

(
x
(N)
l+1 ; f

(N)
l

(
x
(N)
l

)
+ A

(N)
l x

(L)
l ,C

(N)
w

)
,

(65)

respectively. As far as the representations of the messages ~ml

(
x(L)

)
and ~ml

(
x(N)

)
are concerned, the

following choices have been made. The Gaussian model

~ml

(
x(L)

)
= N

(
x
(L)
l ; x̂

(L)
l/(l−1),C

(L)
l/(l−1)

)
, (66)

and the particle-based representation [7]

~ml

(
x(N)

)
=

Np−1∑
j=0

wl,jδ
(
x
(N)
l − x

(N)
l,j

)
, (67)

have been adopted; here, x̂
(L)
l/(l−1) and C

(L)
l/(l−1) denote the mean and the covariance matrix, respectively,

of the prediction x
(L)
l/l−1 of x

(L)
l based on the sequence of vectors y1:(l−1), wl,j denotes the weight

associated with the j-th particle x
(N)
l,j (with j = 0, 1, ..., Np − 1) at the beginning of the l-th recursion

and Np is the overall number of particles. It is also important to point out that:

• The turbo �ltering procedure illustrated below is accomplished in a way that the functional form
of ~ml

(
x(L)

)
(66) and ~ml

(
x(N)

)
(67) is preserved from recursion to recursion (in other words,

the messages ~ml+1

(
x(L)

)
and ~ml+1

(
x(N)

)
generated at the end of the l-th recursion have the

same functional form as ~ml

(
x(L)

)
(66) and ~ml

(
x(N)

)
(67), respectively).

• For l = 1 (35) and (36) are replaced by its Gaussian projection

~m1

(
x(L)

)
= N

(
x
(L)
l ; x̂

(L)
1 ,C

(L)
1

)
(68)

and its particle-based representation

~m1

(
x(N)

)
=

Np−1∑
j=0

w1,jδ
(
x
(N)
1 − x

(N)
1,j

)
; (69)

here, the mean x̂
(L)
1 and the covariance C

(L)
1 are evaluated on the basis of the pdf f

(
x
(L)
1

)
=´

f (x1) dx
(N)
1 , whereas the particles

{
x
(N)
1,j

}
are drawn from f

(
x
(N)
1

)
=
´
f (x1) dx

(L)
1 (the

quantities {w1,j} represent the associated weights).

Under the above assumptions the message passing and initialization procedures for linear Gaussian
systems can be formulated in an elegant way, as illustrated below for the l-th recursion.

Initialization procedure - All that has been illustrated in the previous Paragraph for the initial-
ization in the most general case apply to this speci�c class of systems too. In addition, the following
steps are carried out:
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• Given (66), the quantities

W
(L)
l/(l−1) ,

(
C

(L)
l/(l−1)

)−1

(70)

and
ŵ

(L)
l/(l−1) , W

(L)
l/(l−1)x̂

(L)
l/(l−1) (71)

are evaluated.

• The matrix inverses W
(N)
e ,

(
C

(N)
e

)−1

, W
(L)
e ,

(
C

(L)
e

)−1

, W
(NL)
e ,

(
C

(NL)
e

)−1

, W
(N)
w ,(

C
(N)
w

)−1

and W
(L)
w ,

(
C

(L)
w

)−1

are computed.

Message passing procedure - A description of the steps forming this procedure is provided below
for the k-th iteration (with k = 1, 2, ..., Nit).

1. First measurement update for x
(N)
l - This update step requires the knowledge of ~m(k)

(
ỹ
(N)
l

)
,

which is evaluated on the basis of ỹ
(NL)
l (8) and the message ~m(k−1)

4

(
x
(L)
l

)
(122). Since y

(NL)
l is a

deterministic vector and ~m
(k−1)
4

(
x
(L)
l

)
is a Gaussian message, it is easy to show that

~m(k)
(
ỹ
(N)
l

)
= N

(
ỹ
(N)
l ; η

ỹ
(N)
l,k

,C
ỹ
(N)
l,k

)
, (72)

where η
ỹ
(N)
l,k

= y
(NL)
l −C

(NL)
l η

(L)
4,l,k−1 and C

ỹ
(N)
l,k

= C
(NL)
l C

(L)
4,l,k−1

(
C

(NL)
l

)T
; from these quantities

W
ỹ
(N)
l,k

, C−1

ỹ
(N)
l,k

(73)

and
w

ỹ
(N)
l,k

, W
ỹ
(N)
l,k

η
ỹ
(N)
l,k

(74)

can be evaluated. Then substituting (62), (63) and (72) in (38) produces, after some manipulation
(see the Appendix for the evaluation of the integral appearing in the RHS of (38))

~m
(k)
1

(
x
(N)
l

)
∝ exp

[
−
(
h
(NL)
l

(
x
(N)
l

)
− η(N)

1,l,k

)T
·W(N)

1,l,k

(
h
(NL)
l

(
x
(N)
l

)
− η(N)

1,l,k

)]
·N
(
y
(N)
l ;h

(N)
l

(
x
(N)
l

)
,C

(N)
e

)
,

(75)

with

W
(N)
1,l,k , W(NL)

e

[
IDN

−
[
W(NL)

e + W
ỹ
(N)
l,k

]−1

W(NL)
e

]
(76)

and
w

(N)
1,l,k , W

(N)
1,l,kη

(N)
1,l,k

= W
(NL)
e

[
W

(NL)
e + W

ỹ
(N)
l,k

]−1

w
ỹ
(N)
l,k

.
(77)
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Then, substituting (67) and (75) in (39) yields

~m
(k)
2

(
x
(N)
l

)
= K

(k)
2

Np−1∑
j=0

w̃
(k)
l,j δ

(
x
(N)
l − x

(N)
l,j

)
, (78)

where

w̃
(k)
l,j , wl,j exp

[
−
(
h
(NL)
l

(
x
(N)
l,j

)
− η(N)

1,l,k

)T
·W(N)

1,l,k

(
h
(NL)
l

(
x
(N)
l,j

)
− η(N)

1,l,k

)]
·N
(
yN,l;h

(N)
l

(
x
(N)
l,j

)
,C

(N)
e

) (79)

and K(k)
2 is a proper normalization constant. Note that: a) the �rst measurement update modi�es the

weights of the particles, but not the particles themselves; b) in each iteration, the initial values of the
particles representing the pdf of x

(N)
l are always the same, since they are speci�ed by ~ml

(
x(N)

)
(67).

2. Second measurement update for x
(N)
l - This update requires the knowledge of ~m(k)

(
z
(N)
l

)
(see (41)). Note that in the �rst iteration ~m(1)

(
z
(N)
l

)
= 1 (see (55)), so that ~m(1)

3

(
x
(N)
l

)
= 1 and

~m
(k)
4

(
x
(N)
l

)
= ~m

(k)
2

(
x
(N)
l

)
(see (41) and (42), respectively). In the following iterations (i.e., for

k > 1) the assumption of a Gaussian model for the random variables x
(L)
l+1 and x

(L)
l appearing in the

de�nition (28) of z
(N)
l leads to adopting the Gaussian model

~m(k)
(
z
(N)
l

)
= N

(
z
(N)
l ; η

z
(N)
l,k

,C
z
(N)
l,k

)
, (80)

for z
(N)
l too. In the Appendix it is shown that

η
z
(N)
l,k

= η
(L)
5,l,k−1 −A

(L)
l η

(L)
4,l,k−1 (81)

and
C

z
(N)
l,k

= C
(L)
5,l,k−1 −A

(L)
l C

(L)
4,l,k−1

(
A

(L)
l

)T
, (82)

where η(L)
4,l,k−1 and η(L)

5,l,k−1 (C(L)
4,l,k−1 and C

(L)
5,l,k−1) are mean vectors (covariance matrices) de�ned at

step 4 and at step 5, respectively (see (122) and (141)).
Given η

z
(N)
l,k

(81) and C
z
(N)
l,k

(82), the quantities

W
z
(N)
l,k

, C−1

z
(N)
l,k

(83)

and
w

z
(N)
l,k

, W
z
(N)
l,k

η
z
(N)
l,k

(84)
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are evaluated. Then, substituting (64) and (80) in (41) yields (see the Appendix, point 2., and, in
particular, (165) and (166))

~m
(k)
3

(
x
(N)
l

)
=
´
N
(
z
(N)
l ; η

z
(N)
l,k

,C
z
(N)
l,k

)
N
(
z
(N)
l ; f

(L)
l (xN,l) ,C

(L)
w

)
dz

(N)
l

∝ exp

[
−
(
f
(L)
l

(
x
(N)
l

)
− η(N)

3,l,k

)T
W

(N)
3,l,k

(
f
(L)
l

(
x
(N)
l

)
− η(N)

3,l,k

)]
(85)

with

W
(N)
3,l,k , W(L)

w

[
IDL
−
[
W(L)

w + W
z
(N)
l,k

]−1

W(L)
w

]
(86)

and
w

(N)
3,l,k , W

(N)
3,l,kη

(N)
3,l,k

= W
(L)
w

[
W

(L)
w + W

z
(N)
l,k

]−1

w
z
(N)
l,k

.
(87)

Finally, substituting (85) and (78) in (42) gives

~m
(k)
4

(
x
(N)
l

)
=

Np−1∑
j=0

ŵ
(k)
l,j δ

(
x
(N)
l − x

(N)
l,j

)
, (88)

where

ŵ
(k)
l,j , K

(k)
3 w̃

(k)
l,j exp

[
−
(
f
(L)
l

(
x
(N)
l,j

)
− η(N)

3,l,j

)T
W

(N)
3,l,k

(
f
(L)
l

(
x
(N)
l,j

)
− η(N)

3,l,j

)] (89)

and K(k)
3 is a proper normalization constant. Finally, it is important to point out that: a) the second

measurement update, like the �rst one, modi�es the weights of the particles, but not the particles
themselves; b) since turbo �ltering for linear Gaussian systems is devised in a way that the messages

about x
(L)
l are always Gaussian and ~m

(k)
4

(
x
(N)
l

)
is exploited in the evaluation of such messages, in

this step ~m
(k)
4

(
x
(N)
l

)
is also projected into the (mean and covariance preserving) Gaussian message

~m
(k)
4,G

(
x
(N)
l

)
= N

(
x
(N)
l ; η

(N)
4,l,k,C

(N)
4,l,k

)
, (90)

where

η
(N)
4,l,k ,

Np−1∑
j=0

ŵ
(k)
l,j x

(N)
l,j (91)

and

C
(N)
4,l,k ,

Np−1∑
j=0

ŵ
(k)
l,j

(
x
(N)
l,j − η

(N)
4,l,k

)(
x
(N)
l,j − η

(N)
4,l,k

)T
(92)

represent the mean and covariance matrix, respectively, of x
(N)
l evaluated on the basis of ~m(k)

4

(
x
(N)
l

)
(88).
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3. First measurement update for x
(L)
l - From (19) and ~m

(k)
4

(
x
(N)
l

)
(88), the message ~m(k)

(
ỹ
(L)
l

)
can be easily generated in particle form as

~m(k)
(
ỹ
(L)
l

)
=

Np−1∑
j=0

ŵ
(k)
l,j δ

(
ỹ
(L)
l − ỹ

(L)
l,j

)
, (93)

where
ỹ
(L)
l,j , y

(NL)
l − h

(NL)
l

(
x
(N)
l,j

)
, (94)

for j = 0, 1, ..., Np−1. However, as already explained above, message passing for x
(L)
l involves Gaussian

messages only, ~m(k)
(
ỹ
(L)
l

)
is projected into the (mean and covariance preserving) Gaussian message

~m
(k)
G

(
ỹ
(L)
l

)
= N

(
ỹ
(L)
l ; η

ỹ
(L)
l,k

,C
ỹ
(L)
l,k

)
, (95)

where

η
ỹ
(L)
l,k

,
Np−1∑
j=0

ŵ
(k)
l,j ỹ

(L)
l,j (96)

and

C
ỹ
(L)
l,k

,
Np−1∑
j=0

ŵ
(k)
l,j

(
ỹ
(L)
l,j − ηỹ(L)

l,k

)(
ỹ
(L)
l,j − ηỹ(L)

l,k

)T
. (97)

denote the mean and the covariance matrix, respectively, of ỹ
(L)
l evaluated on the basis of the pdf

~m(k)
(
ỹ
(L)
l

)
(93). Then, the quantities

W
ỹ
(L)
l,k

, C−1

ỹ
(L)
l,k

(98)

and
w

ỹ
(L)
l,k

, W
ỹ
(L)
l,k

η
ỹ
(L)
l

(99)

are evaluated. It is interesting to note that a less computationally demanding (but also less accurate)
alternative is also available for an approximate evaluation of the quantities η

ỹ
(L)
l,k

(96) and C
ỹ
(L)
l,k

(97).

This alternative is based on: a) rewriting ỹ
(L)
l (19) as

ỹ
(L)
l = ỹ

(NL)
l − h

(NL)
l

(
η
(N)
4,l,k + ε

(N)
l,k

)
, (100)

where ε(N)
l,k , x

(N)
l − η(N)

4,l,k is modelled as a DN -dimensional Gaussian vector having zero mean and

covariance C
(N)
4,l,k (92); b) adopting the �rst order Taylor approximation

h
(NL)
l

(
η
(N)
4,l,k + ε

(N)
l,k

)
∼= h

(NL)
l

(
η
(N)
4,l,k

)
+ Jh(NL),l,k ε

(N)
l,k ,

(101)
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where Jh(NL),l,k denotes the Jacobian of h
(NL)
l

(
x
(N)
l

)
evaluated at x

(N)
l = η

(N)
4,l,k. Then, substituting

(101) in (100) yields the approximate expression

ỹ
(L)
l
∼= ỹ

(NL)
l − h

(NL)
l

(
η
(N)
4,l,k

)
− Jh(NL),l,kε

(N)
l,k , (102)

from which the approximate expressions

η
ỹ
(L)
l,k

∼= ỹ
(NL)
l − h

(NL)
l

(
η
(N)
4,l,k

)
(103)

and
C

ỹ
(L)
l,k

∼= Jh(NL),l,kC
(N)
4,l,kJT

h(NL),l,k (104)

can be easily derived.
Given ~m

(k)
G

(
ỹ
(L)
l

)
(95), ~m(k)

1

(
x
(L)
l

)
(43) can be evaluated as follows. Substituting (95), and the

pdfs (58) and (59) (referring to y
(L)
l |x

(L)
l and ỹ

(L)
l |x

(L)
l , respectively) in (43) and keeping into account

that f
(
y
(L)
l |x

(L)
l

)
can be rewritten as

f
(
y
(L)
l

∣∣∣x(L)
l

)
= N

(
x
(L)
l ;

((
C

(L)
l

)T
W

(L)
e C

(L)
l

)−1 (
C

(L)
l

)T
W

(L)
e y

(L)
l ,((

C
(L)
l

)T
W

(L)
e C

(L)
l

)−1
) (105)

yields, after some manipulation (see the Appendix, point 1., and, in particular, (154) and (155)),

~m
(k)
1

(
x
(L)
l

)
= N

(
x
(L)
l ; η

(L)
1,l,k,C

(L)
1,l,k

)
(106)

with
W

(L)
1,l,k ,

(
C

(L)
l

)T
W(L)

e C
(L)
l + W

(L)
0,l,k, (107)

and
w

(L)
1,l,k , W

(L)
1,l,kη

(L)
1,l,k =

(
C

(L)
l

)T
W(L)

e y
(L)
l + w

(L)
0,l,k. (108)

Here, W
(L)
0,l,k and w

(L)
0,l,k are given by (see the Appendix, point 2., and, in particular, (165) and (166))

W
(L)
0,l,k ,

(
C

(NL)
l

)T
W

(NL)
e

·
[
IPNL

−
[
W

ỹ
(L)
l,k

+ W
(NL)
e

]−1

W
(NL)
e

]
C

(NL)
l

(109)

and
w

(L)
0,l,k , W

(L)
0,l,kη

(L)
0,l,k

=
(
C

(NL)
l

)T
W

(NL)
e

[
W

ỹ
(L)
l,k

+ W
(NL)
e

]−1

w
ỹ
(L)
l,k

,
(110)

23



respectively. Finally, substituting (106) and (66) in (44) produces (see the Appendix, point 1., and, in
particular, (154) and (155))

~m
(k)
2

(
x
(L)
l

)
= N

(
xL,l, η

(L)
2,l,k,C

(L)
2,l,k

)
, (111)

with
W

(L)
2,l,k ,

(
C

(L)
2,l,k

)−1

= W
(L)
l/(l−1) + W

(L)
1,l,k (112)

and
w

(L)
2,l,k , W

(L)
2,l,kη

(L)
2,l,k = w

(L)
l/(l−1) + w

(L)
1,l,k. (113)

4. Second measurement update for x
(L)
l - This update requires the knowledge of ~m(k)

(
z
(L)
l

)
(see

(46)). In the �rst iteration ~m(1)
(
z
(L)
l

)
= 1 (see (55)), so that ~m(1)

3

(
x
(L)
l

)
= 1 and ~m

(k)
4

(
x
(L)
l

)
=

~m
(k)
2

(
x
(L)
l

)
(see (46) and (47), respectively). In the following iterations (i.e., for k > 1) the Gaussian

model

~m(k)
(
z
(L)
l

)
= N (z

(L)
l ; η

z
(L)
l,k

,C
z
(L)
l,k

) (114)

is adopted. In the Appendix it is proved that the mean η
z
(L)
l,k

and the covariance matrix C
z
(L)
l,k

of z
(L)
l

are given by
η
z
(L)
l,k

= η
(N)
5,l,k−1 − f

(N)
l

(
η
(N)
4,l,k

)
(115)

and
C

z
(L)
l,k

= C
(N)
5,l,k−1 − Jf(N),l,kC

(N)
4,l,k

(
Jf(N),l,k

)T
(116)

respectively, where η(N)
4,l,k and η

(N)
5,l,k−1 (C(N)

4,l,k and C
(N)
5,l,k−1) are mean vectors (covariance matrices)

de�ned in this step and in the following step, respectively. From η
z
(L)
l,k

(115) and C
z
(L)
l,k

(116) the

quantities
W

z
(L)
l,k

, C−1

z
(L)
l,k

(117)

and
w

z
(L)
l,k

, W
z
(L)
l,k

η
z
(L)
l,k

(118)

are evaluated. Then, substituting (114) and (60) in (46) yields (see the Appendix, point 2., and, in
particular, (165) and (166))

~m
(k)
3

(
x
(L)
l

)
= N

(
x
(L)
l ; η

(L)
3,l,k,C

(L)
3,l,k

)
, (119)

with
W

(L)
3,l,k ,

(
A

(N)
l

)T
W

(N)
w

·
[
IDN

−
[
W

z
(L)
l,k

+ W
(N)
w

]−1

W
(N)
w

]
A

(N)
l

(120)

24



and
w

(L)
3,l,k , W

(L)
3,l,kη

(L)
3,l,k

=
(
A

(N)
l

)T
W

(N)
w

[
W

z
(L)
l,k

+ W
(N)
w

]−1

w
z
(L)
l,k

.
(121)

Finally, from (47), (111), and (119) it is easily inferred that (see the Appendix, point 1., and, in
particular, (154) and (155))

~m
(k)
4

(
x
(L)
l

)
= N

(
x
(L)
l ; η

(L)
4,l,k,C

(L)
4,l,k

)
, (122)

with
W

(L)
4,l,k ,

(
C

(L)
4,l,k

)−1

= W
(L)
2,l,k + W

(L)
3,l,k (123)

and
w

(L)
4,l,k , W

(L)
4,l,kη

(L)
4,l,k = w

(L)
2,l,k + w

(L)
3,l,k. (124)

5. Time update for x
(L)
l and x

(N)
l - This update generates the messages ~m(k)

6

(
x
(N)
l+1

)
and ~m(k)

6

(
x
(L)
l+1

)
.

The �rst message is evaluated on the basis of (48), which requires a double integration. We �rst focus
on the integral ˆ

f
(
x
(N)
l+1

∣∣∣x(L)
l ,x

(N)
l

)
~m

(k)
4

(
x
(L)
l

)
dx

(L)
l (125)

and substitute (65) and (122) in it. This produces the function (see the Appendix, point 3., and, in
particular, (167), (168) and (169) )

gl,k

(
x
(N)
l ,x

(N)
l+1

)
=
´
N
(
x
(L)
l ; η

(L)
4,l,k,C

(L)
4,l,k

)
·N
(
x
(N)
l+1 ; f

(N)
l

(
x
(N)
l

)
+ A

(N)
l x

(L)
l ,C

(N)
w

)
dx

(L)
l

∝ exp

[
−
(
x
(N)
l+1 − η

(g)
l,k

(
x
(N)
l

))T
·
(
C

(g)
l,k

)−1 (
x
(N)
l+1 − η

(g)
l,k

(
x
(N)
l

))]
,

(126)

where
C

(g)
l,k , C(N)

w + A
(N)
l C

(L)
4,l,k

(
A

(N)
l

)T
(127)

and
η
(g)
l,k

(
x
(N)
l

)
, A

(N)
l η

(L)
4,l,k + f

(N)
l

(
x
(N)
l

)
. (128)

Then, the RHS of (48) can be rewritten as

~m
(k)
5

(
x
(N)
l+1

)
=
´
gl,k

(
x
(N)
l ,x

(N)
l+1

)
·~m(k)

4

(
x
(N)
l

)
dx

(N)
l .

(129)

The integration appearing in the RHS of the last expression can be easily carried out, thanks to the
structure of ~m(k)

4

(
x
(N)
l

)
(88). Actually, as already mentioned above turbo �ltering is expected to

preserve the functional form of the output messages generated by each recursion; as it will become
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clearer later, this result can be achieved for x
(N)
l expressing ~m

(k)
5

(
x
(N)
l+1

)
(129) in particle form. A

particle list together with its list of weights for the last message can be generated using a weighted
sampling procedure (see [4, Par. III.A]), which consists of the following steps: a) for p = 0, 1, ..., Np−1

select the point x
(N)
l,p in the particle list contained in ~m

(k)
4

(
x
(N)
l

)
(88); b) draw a sample6 x

(N)
l+1,k,p

from gl,k

(
x
(N)
l,p ,x

(N)
l+1

)
(note that, for a given x

(N)
l , gl,k (·, ·) is a Gaussian function and that the

set of particles referring to x
(N)
l+1 change from iteration to iteration) assign to x

(N)
l+1,k,p a probability

proportional to ŵ(k)
l,p . This procedure generates the message

~m
(k)
5

(
x
(N)
l+1

)
=
∑Np−1

p=0 ŵ
(k)
l,p δ

(
x
(N)
l+1 − x

(N)
l+1,k,p

)
= ~m

(k)
6

(
x
(N)
l+1

)
.

(130)

Finally, ~m(k)
5

(
x
(N)
l

)
is projected into the (mean and covariance preserving) Gaussian message

~m
(k)
5,G

(
x
(N)
l

)
= N

(
x
(N)
l+1 ; η

(N)
5,l,k,C

(N)
5,l,k

)
= ~m

(k)
6,G

(
x
(N)
l+1

)
, (131)

where

η
(N)
5,l,k ,

Np−1∑
p=0

ŵ
(k)
l,j x

(N)
l+1,k,p (132)

and

C
(N)
5,l,k ,

Np−1∑
p=0

ŵ
(k)
l,j

(
x
(N)
l+1,k,p − η

(N)
5,l,k

)(
x
(N)
l+1,k,p − η

(N)
5,l,k

)T
(133)

represent the mean and covariance matrix, respectively, of x
(N)
l+1 evaluated on the basis of ~m(k)

5

(
x
(N)
l

)
(130).

The evaluation of ~m(k)
6

(
x
(L)
l+1

)
is based on (50), which, similarly as (48), requires a double integra-

tion. We �rst take into consideration the integral
ˆ
f
(
x
(L)
l+1

∣∣∣x(L)
l ,x

(N)
l

)
~m

(k)
4

(
x
(N)
l

)
dx

(N)
l (134)

and substitute (88) and (61) in it. This produces

´
f
(
x
(L)
l+1

∣∣∣x(L)
l ,x

(N)
l

)
~m

(k)
4

(
x
(N)
l

)
dx

(N)
l

=
∑Np−1

j=0 ŵ
(k)
l,j N

(
x
(L)
l+1; f

(L)
l

(
x
(N)
l,j

)
+ A

(L)
l x

(L)
l ,C

(L)
w

)
.

(135)

Then, substituting the last result and (122) in (50) yields

~m
(k)
5

(
x
(L)
l+1

)
=
∑Np−1

j=0 ŵ
(k)
l,j

´
N
(
x
(L)
l ; η

(L)
4,l,k,C

(L)
4,l,k

)
·N
(
x
(L)
l+1; f

(L)
l

(
x
(N)
l,j

)
+ A

(L)
l x

(L)
l ,C

(L)
w

)
dx

(L)
l .

(136)

6Note that resampling can be accomplished after this step in order to mitigate the e�ects of the so called degeneracy

problem [7, 31].
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Then, it is not di�cult to show that (see the Appendix, point 3., and, in particular, (168) and (169))

´
N
(
x
(L)
l ; η

(L)
4,l,k,C

(L)
4,l,k

)
· N

(
x
(L)
l+1; f

(L)
l

(
x
(N)
l,j

)
+ A

(L)
l x

(L)
l ,C

(L)
w

)
dx

(L)
l

= N
(
x
(L)
l+1; η

(k)
1,l

(
x
(N)
l,j

)
,C

(k)
1,l

)
,

(137)

where
C

(k)
1,l , C(L)

w + A
(L)
l C

(L)
4,l,k

(
A

(L)
l

)T
(138)

and
η
(k)
1,l

(
x
(N)
l

)
, A

(L)
l η

(L)
4,l,k + f

(L)
l

(
x
(N)
l

)
. (139)

Finally, substituting (137) in (136) produces

~m
(k)
5

(
x
(L)
l+1

)
=
∑Np−1

j=0 ŵ
(k)
l,j N

(
x
(L)
l+1; η

(k)
1,l

(
x
(N)
l,j

)
,C

(k)
1,l

)
= ~m

(k)
6

(
x
(L)
l+1

)
,

(140)

which, unluckily, is a Gaussian mixture. However, in our �ltering technique this Gaussian mixture
is replaced with a Gaussian pdf preserving mean and covariance [16], so that the Gaussianity of
~m

(k)
l+1

(
x(L)

)
is preserved. This leads to the new message

~m
(k)
6,G

(
x
(L)
l+1

)
= ~m

(k)
5,G

(
x
(L)
l+1

)
= N

(
x
(L)
l+1; η

(L)
5,l,k,C

(L)
5,l,k

)
,

(141)

where

η
(L)
5,l,k ,

Np−1∑
j=0

ŵ
(j)
l,k η

(k)
1,l

(
x
(N)
l,j

)
(142)

and
C

(L)
5,l,k = C

(k)
1,l

+
∑Np−1

j=0 ŵ
(j)
l,k

(
η
(k)
1,l

(
x
(N)
l,j

)
− η(L)

5,l,k

) (
η
(k)
1,l

(
x
(N)
l,j

)
− η(L)

5,l,k

)T
.

(143)

6. Stop or get ready for the new recursion - This step is the same as that described in the previous
Paragraph.

Finally, it is important to point out that:

• The processing accomplished in the measurement and time update for x
(L)
l can be interpreted

as a form of 'soft' Kalman �ltering, since, unlike standard Kalman �ltering, a portion of the
available measurements (and, in particular, the information referring to z

(L)
l (20) and ỹ

(L)
l (19)

is not deterministic, but of probabilistic nature.

• The TF algorithm derived above is denoted TF #1 in the following, since other two TF tech-
niques, based on the same line of reasoning illustrated above, are developed in the following
Paragraph.
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Figure 8: Message passing for a TF algorithm (called TF #2) developed on the basis of the FG shown
in Fig. 5. All the quantities appearing in this �gure refer to the k-th iteration of the l-th recursion;
the messages available at the beginning of the considered iteration are indicated by green arrows.
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0.4.3 Other �ltering technique

As already mentioned at the end of Section 0.3, the FG shown in Fig. 5 can be employed in place of
that shown in Fig. 4; for this FG di�erent scheduling procedures, leading to distinct TF algorithms,
can be considered. It is important to note that

• The FG of Fig. 5 can be partitioned in two subgraphs. On the one hand, the �rst subgraph
consisting of upper part of the given graph and message passing over it allows to process the
pseudo-measurement z

(L)
l and z

(N)
l to generate probabilistic information about x

(L)
l+1 and x

(N)
l+1 .

On the other hand, the second subgraph consists of the remaining part (i.e., of the lower part) of
the same graph and message passing over it can be employed to re�ne our probabilistic knowledge
of x

(L)
l+1 and x

(N)
l+1 on the basis of y

(L)
l+1, y

(N)
l+1 and y

(NL)
l+1 .

• In developing novel �ltering techniques multiple passes can be accomplished within the �rst
subgraph before passing messages to the second subgraph; similar considerations hold for message
passing from the second subgraph to the �rst one.

On the basis of these considerations, two di�erent scheduling procedures have been considered in the
following for the message �ow in the FG of 4. In the �rst procedure a single pass is accomplished
within each subgraph but, generally speaking, Nit passes accomplished within the overall graph; the
corresponding message �ow for the k-th iteration of the l-th recursion is shown in Fig. 8. On the
contrary, in the second procedure Nit,1 iterations accomplished within the upper subgraph are followed
by Nit,2 iterations carried out within the lower subgraph; then, the resulting statistical information
are passed to the next recursion. The resulting �ltering techniques are denoted TF #2 and TF #3,
respectively, in the following. Note that, unlike TF #1, mathematical expressions are not provided
below for the messages evaluated in these additional �ltering techniques, since they can be easily
developed from those already derived for TF #1. In Section 0.5 the three TF options are compared
in terms of performance in speci�c cases.

0.4.4 Computational complexity of turbo �ltering for linear Gaussian sys-

tems

In this Paragraph the computational complexity of TF #1 is analysed7. Following [17], in assessing
the overall computational load of a single iteration of our �ltering technique, only the messages and the
procedures in�uenced by the number of particles Np have been taken into consideration, since provide
the dominant contribution to the load itself. For this reason, the number of sums, products and other
operations have been evaluated for the following tasks (see Table 1):

1. Computation of the message ~m(k)
4

(
x
(N)
l

)
(88) - In particular, the complexity required for the

evaluation of w̃(k)
l,j (79) (contribution # 1.a), ŵ(k)

l,j (89) (contribution # 1.b), and η(N)
4,l,k (91) and

C
(N)
4,l,k (92) (contribution # 1.c) have been assessed.

2. Computation of the message ~m(k)
5

(
x
(L)
l

)
(140) - In particular, the complexity required for the

evaluation of η(L)
5,l,k (142) and C

(L)
5,l,k (143) has been assessed (contribution # 2).

7The computational complexity of TF #2 is similar to that of TF #1, whereas that of TF #3 can be easily evaluated
following the same line of reasoning as TF #1.
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Contribution # Sums Products Other

1.a
2P 2

NLNp+
2D2

NNp + 2Np

2P 2
NLNp+

2D2
NNp + 2Np

2Np +NpFhNL

1.b
3D2

LNp+
NpDL +Np

2D2
LNp + 3Np Np +NpFfL

1.c NpDN + 2NpD
2
N NpDN +NpD

2
N

2
2NpD

2
L+

2D2
L +NpDL

2NPD
2
L+

2D2
L +NpDL

NpFfL

3
DND

2
L +D2

NDL+
NpDNDL +NpD

2
N+

2D2
N + 2NpDN

DND
2
L +D2

NDL+
NpDNDL+
NpD

2
N

cres+
Fchol +NpFfN

4 NpDN + 2NpD
2
N NpDN +NpD

2
N

Table 1: Computational complexity of di�erent procedures contained in TF #1 for linear Gaussian
systems; the main tasks carried out in a single iteration are considered.

3. Particle generation and resampling procedure accomplished at step 5. (contribution # 3).

4. Computation of the message ~m(k)
5

(
x
(N)
l

)
(130) - In particular, the complexity required for the

evaluation of η(N)
5,l,k (132) and C

(N)
5,l,k (133) has been assessed (contribution # 4).

Note that in Table 1 FhNL
,FfLand FfNdenote the computational complexity associated with the

evaluation of the functions h
(NL)
l

(
x
(N)
l

)
, f

(L)
t

(
x
(N)
t

)
and f

(N)
t

(
x
(N)
t

)
, respectively, whereas Fchol

represents the complexity of the Cholesky factorisations of the matrix C
(g)
l,k (127) (this is required at

step. 5, when generating a new set of particles
{

x
(N)
l+1,k,p

}
).

If we now assign a unit weight to all the operations considered in Table 1, conventionally assign
the complexities PNL, DL and DN to FhNL

, FfL and FfN , respectively (in other words, the complexity
of each of these functions is deemed to be proportional to its size), and neglect Fchol (since this is not
in�uenced by Np), the estimate

CTF (DL, DN , Np, PL, PN , PNL) =(
4P 2

NL + 12D2
N + 8 + 9D2

L + 7DL + 8DN + 2DNDL + 2PNL + cres
)
Np

(144)

can be easily obtained for the computational complexity, in terms of �oating point operations (�ops),
of a single iteration in turbo �ltering; here, cres represents the contribution of resampling to �op count
[17]. The corresponding estimate for marginalized particle �ltering, evaluated on the basis of [17, Table
I, p. 4409], is

CMPF (DL, DN , Np) =(
DLDN + 6D2

N + 2D2
L +DN −DL +DNc3 + c1+

c2 + 4DND
2
L + 8DLD

2
N + 4

3D
3
N + 6D3

L

)
Np,

(145)

where c1, c2 and c3 refer to the computation of the Gaussian likelihood, of resampling and of random
numbers, respectively. Note that CMPF is dominated by various cubic terms appearing in the brackets,
which do not appear in CTF ; this evidences that the latter complexity should be expected to be
substantially larger than the former one when the size of the state vector is large.
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TF #1 TF #1 MPF
Nit = 2 Nit = 3

x
(L)
t 0.0990 0.0985 0.0875

x
(N)
t 0.1356 0.1345 0.1311

Table 2: RMSE performance provided by TF #1 and MPF for the considered system.

0.5 Numerical Results

In this Section TF is compared with MPF in terms of accuracy and complexity for two di�erent linear
Gaussian systems.

0.5.1 System A

The �rst system we consider (denoted system A in the following) is characterized by: a) the state
model

x
(L)
t+1 =

 cos
(
x
(N)
t

)
− sin

(
x
(N)
t

) +

(
1 0.3
0 0.92

)
x
(L)
t + w

(L)
t , (146)

x
(N)
t+1 = arctanx

(N)
t + (1 0.5)x

(L)
t + w

(N)
t , (147)

where w
(L)
t ∼ N (0,C

(L)
w ) and w(N)

t ∼ N (0, C
(N)
w ) (consequently, D = 3 , DL = 2 and DN = 1); b) the

measurement model

yt =


0.1
(
x
(N)
t

)
2 · sgn

(
x
(N)
t

)
0

1 + cos
(
x
(N)
t

)
+

 0 0
1 −1
1 0

x
(L)
t + et, (148)

where et = [e
(L)
t , e

(N)
t , e

(NL)
t ]T , with e(L)

t ∼ N (0, C
(L)
e ), e(N)

t ∼ N (0, C
(N)
e ), and e(NL)

t ∼ N (0, C
(NL)
e )

(consequently, P = 3 and PL = PN = PNL = 1). In our simulations the root mean square error
(RMSE) performance provided by TF and MPF for the considered system has been assessed under
the following assumptions: a) C

(L)
w = 0.1I2, C

(N)
w = 0.2; b) C(L)

e = C
(N)
e = C

(NL)
e = 0.01; c) Np = 200

for both the considered �ltering techniques (a minor improvement has been found with larger values
of Np); d) the �jittering� technique [2] has been employed in TF to mitigate the so called depletion
problem in the generation of new particles (in practice, a value larger than the real one is taken for
C

(N)
w when evaluating C

(g)
l,k (127)). Some numerical results are listed in Table 2, which shows the

RMSE referring to the linear and the nonlinear portions of the system state when TF #1 or MPF are
employed. These results lead to the conclusion that TF #1 performance marginally improves after
two iterations and is close to that achieved by MPF. The good accuracy provided by TF #1 is also
evidenced by Fig. 9, which shows a realization of the state evolution for the considered dynamic model
over 50 consecutive intervals (black curves) and the state estimates evaluated by the TF with Nit = 3
(red curves). As far as the computational load is concerned, from (144) and (145) it is easily inferred
that Nit · CTF#1 = 2.3 · 105 with Nit = 2 and CMPF = 2.306 · 105, so that a marginal gap is found
(this gap widens substantially as D increases, as evidenced below in Section 0.5.3).
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Figure 9: Example of state evolution for the dynamic model (146)-(147) (black curves); the corre-
sponding state estimates evaluated by TF #1 with Nit = 3 are also shown (red curves).

0.5.2 System B

The second considered system (denoted system B in the following) is characterized by: a) the state
model

x
(L)
t+1 = cos

(
x
(N)
t

)
+ 0.5x

(L)
t + w

(L)
t , (149)

x
(N)
t+1 = sin

(
x
(N)
t

)
+ 0.5x

(L)
t + w

(N)
t , (150)

where w(L)
t ∼ N (0,C

(L)
w ) and w(N)

t ∼ N (0, C
(N)
w ) (consequently, D = 2 , DL = 1 and DN = 1); b) the

measurement model

yt =


0.1
(
x
(N)
t

)
2 · sgn

(
x
(N)
t

)
0

1 + cos
(
x
(N)
t

)
+

 0
1
1

x
(L)
t + et, (151)

where et = [e
(L)
t , e

(N)
t , e

(NL)
t ]T , with e(L)

t ∼ N (0, C
(L)
e ), e(N)

t ∼ N (0, C
(N)
e ), and e(NL)

t ∼ N (0, C
(NL)
e )

(consequently, P = 3 and PL = PN = PNL = 1). In our simulations the root mean square error
(RMSE) performance provided by TF and MPF for the considered system has been assessed, similarly
to the System A (Section 0.5.1), under the following assumptions: a) C(L)

w = C
(N)
w = 10−2; b)

C
(L)
e = C

(N)
e = C

(NL)
e = 10−3; c) Np = 200 for both the considered �ltering techniques; d) the

�jittering� technique [2] has been employed in TF to mitigate the so called depletion problem in the
generation of new particles (in practice, a value larger than the real one is taken for C(N)

w when
evaluating C

(g)
l,k (127)). Some numerical results are listed in Tab 3, which shows the RMSE referring to

the linear and the nonlinear portions of the system state; MPF and all the developed TF algorithms
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TF #1 TF #1 MPF
Nit = 2 Nit = 3

x
(L)
t 0.0455 0.0420 0.0398

x
(N)
t 0.0274 0.0273 0.0273

(a) TF #1 and MPF.

TF #3 TF #3 TF #2 TF #2
Nit,1 = 2 Nit,1 = 3 Nit = 2 Nit = 3
Nit,2 = 2 Nit,2 = 2

x
(L)
t 0.0402 0.0395 0.0391 0.0391

x
(N)
t 0.0273 0.0273 0.0289 0.0289

(b) TF #2 and TF #3.

Table 3: RMSE performance.

have been considered in this case. These results lead to the following conclusions: a) the performance
of TF #1 (TF #2) marginally improves (does not improve at all) after two iterations and is very close
to that achieved by MPF; b) the TF #3 performance with Nit,1 = 3 and Nit,s = 2 is even better than
provided by MPF. As far as the computational load is concerned, from (144) and (145) it is easily
inferred that Nit · CTF#1 = 2.15 · 105 with Nit = 2 and CMPF = 2.17 · 105, so that, once again, a
marginal gap is found (similar comments hold if TF #2 or TF #3 are considered in place of TF #1).

0.5.3 Other results

Comparing TF # 1 with MPF, the gap previously found in the computational load for the two speci�c
system taken into consideration widens substantially as D increases, as evidenced by Fig. 10. This
�gure allows us to compare the trend of TF complexity (Nit ·CTF#1 with Nit = 2) with that of MPF
(CMPF ) as DN increases for three di�erent values of the ratio R , DN/DL; in this case PNL = 1 has
been selected in (144) for simplicity and Np = 200 has been adopted for both algorithms.

0.6 Conclusions

In this manuscript a FG approach to the �ltering problem for mixed linear/nonlinear systems has
been employed. This has resulted in a novel recursive �ltering method, dubbed turbo �ltering, whose
application to the class of linear Gaussian systems has been analysed in detail. Our preliminary
results evidence that the performance achieved by this method is close to that of MPF; its complexity,
however, can be signi�cantly smaller if the size of the state vector representing the considered system
is large. Our ongoing research work concerns the development of turbo �ltering algorithms for other
classes of systems and its application to speci�c state estimation problems.
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Figure 10: Overall computational complexity of TF #1 (with Nit = 2) and MPF versus DN for R = 1,
1/2 and 1/3; Np = 200 has been selected for both techniques.

0.7 Appendix A

In this Appendix the derivations of some expressions employed for the evaluation of turbo �ltering
messages are sketched. Such derivations and those mentioned in the previous Sections are based on
the mathematical results summarized in the following four points.

1. If the Gaussian messages ~m1 (x) = N (x; η1,C1) and ~m2 (x) = N (x; η2,C2) enter an equality
node in a FG, the resulting message is ~m3 (x) , ~m1 (x) · ~m2 (x) = N (x; η,C), with (see [5, p.
1303, Table II])

C−1 = C−1
1 + C−1

2 (152)

and
C−1η = C−1

1 η1 + C−1
2 η2. (153)

Note that: a) (152) and (153) can be rewritten as

W = W1 + W2 (154)

and
w = w1 + w2, (155)

respectively, where W1 , C−1
1 , W2 , C−1

2 , W , C−1, w1 , W1η1, w2 , W2η2 and w , Wη.

2. Given the pdf f (y) , N (y; η1,C1) and the conditional pdf f (y |x ) , N (y;g (x) ,C2) for the
N -dimensional vector y, where g (x) is a real valued function of the M -dimensional vector x, it
can be proved that ´

f (y) · f (y |x ) dy ∝ exp
[
− (g (x)− ηg)T

·C−1
g (g (x)− ηg)

] (156)
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where
C−1

g = C−1
2

[
IN −

[
C−1

2 + C−1
1

]−1
C−1

2

]
(157)

and
C−1

g ηg = C−1
2

[
C−1

1 + C−1
2

]−1
C−1

1 η1. (158)

The last two equations can be rewritten as

Wg = W2

[
IN − [W1 + W2]

−1
W2

]
(159)

and
wg = W2 [W1 + W2]

−1
w1, (160)

respectively, where W1 , C−1
1 , W2 , C−1

2 , Wg , C−1
g , wg , C−1

g ηg and w1 , W1η1. If the
function g (x) exhibits a linear dependence on x, i.e.

g (x) , g0 + Gx, (161)

where g0 is an N -dimensional vector and G is an N ×M matrix, it can also be proved thatˆ
f (y) · f (y |x ) dy ∝ N (x; ηx,Cx) (162)

with
C−1

x = GTC−1
g G (163)

and
C−1

x ηx = GTC−1
g (ηg − g0) . (164)

Similarly as the previous case, the last two equations can be rewritten as (see (157)-(160))

Wx = GTWgG

= GTW2

[
IN − [W1 + W2]

−1
W2

]
G

(165)

and
wx = GTWg (ηg − g0) .

= GTW2 [W1 + W2]
−1

w1

−GTW2

[
IN − [W1 + W2]

−1
W2

]
g0,

(166)

respectively, where W1 , C−1
1 , W2 , C−1

2 , Wx , C−1
x , wx , C−1

x ηx and w1 , W1η1.

3. Given the pdf f (x) , N (x; η1,C1) for the M -dimensional vector x and the conditional pdf
f (y |x ) , N (y;g (x) ,C2) for the N -dimensional vector y, where g (x) is expressed by (161), it
can be proved that (e.g., see [14, Par. 2.3.3]):

ˆ
f (x) · f (y |x ) dx = N (y; ηy,Cy) (167)

with
Cy = C2 + GC1G

T (168)

and
ηy = Gη1 + g0. (169)
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4. Given the pdf f (x) , N (x; η1,C1) for the M -dimensional vector x and the conditional pdf
f (y |x ) , N (y;g (x) ,C2) for the N -dimensional vector y, where g (x) is expressed by (161), it
can be proved that (e.g., see [14, Par. 2.3.3]) the covariance matrix of the joint distribution is:

Cxy =

(
C1 C1G

T

GC1 C2 + GC1G
T

)
Let us now show how some of these results can be exploited to derive some results not proved in

the previous Sections. In particular, we �rst take into consideration the derivation of (75), (76) and
(77); this requires the evaluation of the integral (see (38), (63) and (72))

´
~m(k)

(
ỹ
(N)
l

)
f
(
ỹ
(N)
l

∣∣∣x(N)
l

)
dỹ

(N)
l

=
´
N
(
ỹ
(N)
l ; η

ỹ
(N)
l,k

,C
ỹ
(N)
l,k

)
·N
(
ỹ
(N)
l ;h

(NL)
l

(
x
(N)
l

)
,C

(NL)
e

)
dỹ

(N)
l .

(170)

Then, from (156)-(158) it can be easily inferred that
´
~m(k)

(
ỹ
(N)
l

)
f
(
ỹ
(N)
l

∣∣∣x(N)
l

)
dỹN,l

∝ exp

[
−
(
h
(NL)
l

(
x
(N)
l

)
− η(N)

1,l,k

)T
·W(N)

1,l,k

(
h
(NL)
l

(
x
(N)
l

)
− η(N)

1,l,k

)]
,

(171)

where W
(N)
1,l,k and η(N)

1,l,k are given by (76) and (77), respectively. Finally, substituting (62) and (171) in
(38) yields (75). Note that a similar procedure followed for deriving (75) can be also adopted for the
evaluation of the integrals appearing in the RHSs of (85) and (126) (for which, however, the results
illustrated at point 3., instead of point 2., are used).

Let us takes into consideration now the derivation of (80), (81) and (82). To begin, we note that
(see (80))

z
(N)
l , x

(L)
l+1 −A

(L)
l x

(L)
l , (172)

so that averaging with respect to the the messages ~m(k−1)
4

(
x
(L)
l

)
and ~m

(k−1)
6,G

(
x
(L)
l+1

)
(see (122), (141)

and Fig. 7) produces (81). Consequently, the covariance matrix C
z
(N)
l,k

of z
(N)
l in the same iteration is

given by

C
z
(N)
l,k

= E
{[(

x
(L)
l+1 −A

(L)
l x

(L)
l

)
−
(
η
(L)
5,l,k−1 −A

(L)
l η

(L)
4,l,k−1

)]
·
[(

x
(L)
l+1 −A

(L)
l x

(L)
l

)
−
(
η
(L)
5,l,k−1 −A

(L)
l η

(L)
4,l,k−1

)]T}
= E

{(
x
(L)
l+1 − η

(L)
5,l,k−1

)
−A

(L)
l

(
x
(L)
l − η(L)

4,l,k−1

)
·
[(

x
(L)
l+1 − η

(L)
5,l,k−1

)
−A

(L)
l

(
x
(L)
l − η(L)

4,l,k−1

)]T}
= C

(L)
5,l,k−1 + A

(L)
l C

(L)
4,l,k−1

(
A

(L)
l

)T
−A

(L)
l

(
C

(L)
l,l+1,k

)T
−C

(L)
l,l+1,k

(
A

(L)
l

)T
,

(173)
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where

C
(L)
l,l+1,k , E

{[
x
(L)
l+1 − η

(L)
5,l,k−1

] [
x
(L)
l − η(L)

4,l,k−1

]T}
. (174)

Unluckily, the evaluation of C
(L)
l,l+1,k (174) requires the knowledge of the joint pdf of the random

variables x
(L)
l+1 and x

(L)
l+1; note that this pdf cannot inferred from ~m

(k−1)
4

(
x
(L)
l

)
and ~m

(k−1)
6

(
x
(L)
l+1

)
,

unless the random variables x
(L)
l and x

(L)
l+1 are assumed to be independent. A more re�ned alternative

to making the last assumptions is represented by approximating the joint pdf of the random variables
x
(L)
l+1 and x

(L)
l+1 with the function fl,k

(
x
(L)
l ,x

(L)
l+1

)
(40), which involves ~m(k−1)

4

(
x
(N)
l

)
(whose �ow into

the dashed block generating z
(N)
l is not visible in the graph), but is not in�uenced by ~m

(k−1)
6

(
x
(L)
l+1

)
.

In our derivation, the Gaussian projection ~m
(k−1)
4,G

(
x
(N)
l

)
of ~m(k−1)

4

(
x
(N)
l

)
is employed (see (90)), so

that the integral appearing in the RHS of (40) is approximated as

´
f
(
x
(L)
l+1

∣∣∣x(L)
l ,x

(N)
l

)
· ~m(k−1)

4

(
x
(N)
l

)
dx

(N)
l

∼=
´
N
(
x
(L)
l+1; f

(L)
l

(
x
(N)
l

)
+ A

(L)
l x

(L)
l ,C

(L)
w

)
· N

(
x
(N)
l ; η

(N)
4,l,k−1,C

(N)
4,l,k−1

)
dx

(N)
l .

(175)

In the last integral we adopt the further approximation

fL (xN,l) ∼= f
(L)
l

(
x̂
(N)
l,k−1

)
+ Jf(L),l,k−1

(
x
(N)
l − η(N)

4,l,k−1

)
(176)

over the whole integration domain, where Jf(L),l,k−1 denotes the Jacobian of f
(L)
l (xN,l) evaluated at

x
(N)
l = η

(N)
4,l,k−1. Exploiting this approximation, the mathematical results illustrated at point 3. (see,

in particular, (168) and (169)) in the evaluation of (175) leads to the expression

´
f
(
x
(L)
l+1

∣∣∣x(L)
l ,x

(N)
l

)
· ~m(k−1)

4

(
x
(N)
l

)
dx

(N)
l

∼= N
(
x
(L)
l+1; η̃k (xL,l) , C̃

(L)
k

)
,

(177)

where

η̃(k)
(
x
(L)
l

)
= Jf(L),l,k−1η

(N)
4,l,k−1 + f

(L)
l

(
η
(N)
4,l,k−1

)
− Jf(L),l,k−1η

(N)
4,l,k−1 + A

(L)
l x

(L)
l

= f
(L)
l

(
η
(N)
4,l,k−1

)
+ A

(L)
l x

(L)
l

(178)

and
C̃

(L)
k = C(L)

w + Jf(L),l,k−1C
(N)
l,k−1

(
Jf(L),l,k−1

)T
. (179)

Then, substituting (122) and (177) in the RHS of (40) yields

fl,k

(
x
(L)
l ,x

(L)
l+1

)
∼= N

(
xL,l; η

(k)
4,L,l,C

(L)
4,l,k−1

)
N
(
x
(L)
l+1; η̃

(k) (xL,l) , C̃
(L)
k

)
(180)

On the basis of the last expression, (178) and the mathematical results illustrated at point 4., it is
easy to show that C

(L)
l,l+1,k (174) can be approximated as
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C
(L)
l,l+1,k

∼= A
(L)
l C

(L)
4,l,k−1, (181)

so that substituting the last result in (174) produces (82). Note that this result is independent of

~m
(k−1)
4,G

(
x
(N)
l

)
, which, consequently, is not required in the evaluation of ~m(k)

(
z
(N)
l

)
(80) (as shown

in Fig. 7).

A similar line of reasoning can be followed for the message ~m(k)
(
z
(L)
l

)
(114), whose evaluation in

the k-th iteration involves ~m(k)
4

(
x
(N)
l

)
(88) and ~m

(k−1)
6

(
x
(N)
l+1

)
(130). To simply the derivation of this

message, the �rst order Taylor expansion

f
(N)
l

(
x
(N)
l

)
∼= f

(N)
l

(
η
(N)
4,l,k

)
+ Jf(N),l,k

(
x
(N)
l − η(N)

4,l,k

)
(182)

is employed, where Jf(N),l,k denotes the Jacobian of f
(N)
l

(
x
(N)
l

)
evaluated at x

(N)
l = η

(N)
4,l,k. This

allows us to approximate z
(L)
l (20) as

z
(L)
l , x

(N)
l+1 − fN,l

(
x
(N)
l

)
∼= x

(N)
l+1 − f

(N)
l

(
η
(N)
4,l,k

)
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(
x
(N)
l − η(N)

4,l,k

)
(183)

From the last equation the expression (115) is easily derived for the mean η
z
(L)
l,k

of z
(L)
l in the k-th

iteration. Moreover, the covariance matrix C
z
(L)
l,k

of z
(L)
l in the same iteration is given by

C
z
(L)
l,k

= E
{[(

x
(N)
l+1 − η

(N)
5,l,k−1

)
− Jf(N),l,k

(
x
(N)
l − η(N)
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)]
.
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x
(N)
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5,l,k−1

)
− Jf(N),l,k

(
x
(N)
l − η(N)

4,l,k

)]T}
= C

(N)
5,l,k−1 + Jf(N),l,kC

(N)
4,l,k

(
Jf(N),l,k

)T
−C

(N)
l,l+1,k

(
Jf(N),l,k

)T − Jf(N),l,k
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(N)
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)T
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(184)

where

C
(N)
l,l+1,k , E

{[
x
(N)
l+1 − η

(N)
5,l,k−1

] [
x
(N)
l − η(N)

4,l,k

]T}
(185)

Similarly as C
(L)
l,l+1,k (174), the evaluation of C

(N)
l,l+1,k (185) requires the knowledge of the joint pdf of the

random variables x
(N)
l+1 and x

(N)
l+1 , which cannot inferred from ~m

(k)
4

(
x
(N)
l

)
and ~m

(k−1)
6

(
x
(N)
l+1

)
, unless

the random variables x
(N)
l and x

(N)
l+1 are assumed to be independent. For this reason this joint pdf is

approximated with the function f̃l,k
(
x
(N)
l ,x

(N)
l+1

)
(45), which involves ~m(k−1)

4

(
x
(L)
l

)
(whose �ow into

the dashed block generating z
(L)
l is not visible in the graph), but is not in�uenced by ~m

(k−1)
6

(
x
(N)
l+1

)
.

Let us focus now on the integral
ˆ

f
(
x
(N)
l+1

∣∣∣x(N)
l ,x

(L)
l

)
· ~m(k−1)

4

(
x
(L)
l

)
dx

(L)
l , (186)
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appearing in the RHS of (45). Substituting (65) and (122) in this integral and exploiting the results
illustrated at point 3. yields

´
N
(
x
(N)
l+1 ; f

(N)
l

(
x
(N)
l

)
+ A

(N)
l x

(L)
l ,C

(N)
w

)
· N

(
x
(L)
l ; η

(L)
4,l,k−1,C

(L)
4,l,k−1

)
dx

(L)
l

= N
(
x
(N)
l+1 ; η̃

(k)
(
x
(N)
l

)
, C̃

(N)
k

) (187)

where

η̃(k)
(
x
(N)
l

)
= A

(N)
l η

(L)
4,l,k−1 + f

(N)
l

(
x
(N)
l

)
(188)

and
C̃

(N)
k = C(N)

w + A
(N)
l C

(L)
4,l,k−1

(
A

(N)
l

)T
. (189)

Since a Gaussian form is desired for ~m(k)
(
z
(L)
l

)
, the Gaussian projection ~m(k)

4,G

(
x
(N)
l

)
(90) of ~m(k)

4

(
x
(N)
l

)
(88) is employed in the evaluation of f̃l,k

(
x
(N)
l ,x

(N)
l+1

)
(45). Then, substituting (90) and (187) in (45)

yields

f̃l,k

(
x
(N)
l ,x

(N)
l+1

)
∼= N

(
x
(N)
l ; η

(N)
4,l,k,C

(N)
4,l,k

)
N
(
x
(N)
l+1 ; η̃

(k)
(
x
(N)
l

)
, C̃

(N)
k

)
, (190)

Finally, based on the last expression, (188) and the mathematical results illustrated at point 4., it is
easy to show that C

(N)
l,l+1,k (174) can be approximated as

C
(N)
l,l+1,k

∼= Jf(N),l,kC
(N)
4,l,k (191)

Finally, substituting the last result in (184) yields (116); note that this expression is independent of

~m
(k−1)
4

(
x
(L)
l

)
, which, consequently, is not required in the evaluation of ~m(k)

(
z
(L)
l

)
(114) (as shown

in Fig. 7).
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