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Abstract

In this manuscript the application of a factor graph approach to the filtering problem for a mixed
linear /nonlinear state-space model is investigated. In particular, after developing a factor graph for
the considered model, a novel approximate recursive technique for solving such a problem is derived
applying the sum-product algorithm and a specific scheduling procedure for message passing to this
graph. Then, the application of this technique, dubbed turbo filtering for its conceptual resemblance
with turbo decoding of concatenated channel codes, to linear Gaussian systems is investigated. Numer-
ical results for specific state-space models show that turbo filtering can achieve a good performance-
complexity tradeoff.



0.1 Introduction

The nonlinear filtering problem consists of inferring the posterior distribution of the hidden state
of a nonlinear dynamic system from a set of past and present measurements [7]. It is well known
that, if a nonlinear dynamic system can be described by a hidden Markov model (HMM), a general
sequential procedure, based on the Bayes’ rule and known as Bayesian filtering, can be easily derived
for recursively computing the posterior distribution of the system current state [7]. Unluckily, Bayesian
filtering is analytically tractable in few cases for the following two reasons [18]: a) one of the two update
steps it consists of requires multidimensional integration which, in most cases, does not admit a closed
form solution; b) the functional form of the required posterior distribution may not be preserved
over successive recursions. For this reason, sequential techniques employed in practice are based
on various analytical approximations and, consequently, generate a functional approximation of the
desired distribution. Such techniques are commonly divided into local and global methods on the basis
of the way posterior distributions are approximated [15, 21, 26]. Local methods, like extended Kalman
filtering [23] and unscented filtering [22] are computationally efficient but may suffer from the problem
of error accumulation over time. On the contrary, global methods, like sequential Monte Carlo methods
[19, 20] (also known as particle filtering, PF, methods [1, 2]) and point mass filtering [27, 26] may
achieve high accuracy at the price, however, of an unmanageable complexity and numerical problems
when the dimension of system state is large [3]. These considerations have motivated various research
activities focused on the development of novel Bayesian filters that can achieve high accuracy under
given computational constraints. Significant results in this research area concern the use of the new
representations for complex distributions, like belief condensation filtering [15], and the development
of novel filtering techniques combining local and global methods, like marginalized particle filtering
[6, 17] and other methods originating from it [21, 28]. It is also worth mentioning that marginalized
particle filtering and its variants apply to systems represented by mized linear/nonlinear models. In
fact, in these methods the availability of a ’linear’ portion in system state (i.e., of one or more state
variables appearing linearly in system dynamics) is exploited; this allows to combine a global method
(e.g., particle filtering) with a local technique (e.g., Kalman filtering).

In this manuscript the problem of recursive Bayesian filtering for mixed linear/nonlinear models is
revisited from a different perspective. In fact, first a factor graph (FG) approach [5, 9] is employed
to develop a graphical representation of Bayesian filtering for this class of models. Then, it is shown
that: a) applying the sum-product algorithm (SPA) [5, 9], together with a specific message scheduling
procedure, to this representation results in a novel type of iterative filtering technique, called turbo
filtering; b) in the specific case of Gaussian systems turbo filtering algorithms can be implemented
in a computationally efficient way by combining a global technique (namely, particle filtering) with a
local technique (in particular, a variant of Kalman filtering). It is important to point that, even if
turbo filtering for linear Gaussian systems combines local and global approximations similar to that
employed by marginalized particle filtering, it is characterized by a substantially different structure.
In fact, marginalized particle filtering requires multiple parallel conditional filtering updates, since
sufficient statistics are required for each particle trajectory, and these updates are carried out once in
each recursion. On the contrary, turbo filtering employs a single Kalman filter, run as many times as
the number of accomplished iterations in each recursion, with the aim of progressively refining state
estimates. For this reason, it can provide a significant gain in terms of computational complexity with
respect to MPF when the size of the state vector for the considered system is large; our simulation
results, referring to specific systems, evidence that this result is achieved at the price of a small
performance loss.



It is worth pointing out that turbo filtering has been mainly inspired by the following ideas:

e A mixed linear/nonlinear Markov system can be represented as the concatenation of two in-
teracting subsystems, one governed by linear dynamics, the other accounting for a nonlinear
behavior; conceptually related (finite state) Markov models can be found in data communica-
tions and, in particular, in concatenated channel coding (e.g., turbo coding [30]) and in coded
transmissions over inter-symbol interference channels for which turbo decoding methods [13, 30]
and turbo equalization techniques [25] have been developed, respectively?.

e Factor graphs play an essential role in the derivation and interpretation of turbo decoding and
equalization [5] (for instance, turbo decoding techniques emerge in a natural fashion from graph-
ical models of codes [10]).

e Both Kalman filtering and particle methods can be viewed as message passing procedures on
factor graphs, as shown in [5, 9] and [4], respectively.

However, multiple connections of our approach with previous work on Bayesian inference on graphical
models and variational Bayes methods [29] can be also established. In fact, the relevant principle of
progressively refining distributional approximations through multiple iterations has been also exploited
in previous work about Bayesian inference on dynamic systems, and, in particular, in ezpectation
propagation in Bayesian networks [24] and in wvariational Bayesian filtering [21].

The remaining part of this manuscript is organized as follows. A description of the mathematical
model for the considered mixed linear/nonlinear system is illustrated in Section 0.2. In Section 0.3 it
is proved how the filtering problem for this system can be described by a proper FG which, unluckily,
is not cycle free. In Section 0.4 it is shown how the turbo filtering method emerges in natural fashion
from applying SPA and proper message scheduling strategies (i.e., a loopy belief propagation strategy)
to this FG; moreover, specific implementations of this method for the class of linear Gaussian systems
are derived and the computational complexity of one of them is analysed in detail. Turbo filtering for
specific linear Gaussian systems are compared with other filtering techniques in terms of performance
and complexity in Section 0.5. Finally, some conclusions are offered in Section 0.6.

Notations: The probability density function (pdf) of a random vector R evaluated at point r is
denoted f(r); N (r;n, X) represents the the pdf of a Gaussian random vector R characterized by the
mean 1 and covariance matrix 3 evaluated at point r ; z; denotes the i-th element of the vector x.

0.2 System Model

In the following we focus on a discrete-time mixed linear /nonlinear Markov system [6], whose hidden
state in the t-th interval is represented by a D-dimensional real vector x; = [0 ¢, Z1,4, -, Tp—1,¢]7 . We
assume that this vector can be partitioned as

s [)" )T 0

where XEL) = [xé?,xift), ...,93(52_1 AT (XEN) = [zé{i),xﬂ), "'7IEDL13;—1,t]T) is the so called linear (non-
linear) component of x; (1), with Dy, < D (Dy = D — Dy). This partitioning of x; is based on the

following simple rule. First, ng) is identified as that portion of x; (1) characterized by the following

two properties:

INote that these classes of algorithms can be seen as specific applications of the so called turbo principle [11]



1. Conditionally linear dynamics - This means that its update equation, conditioned on ng), is

linear; in other words, we have that
L A (D) (L g(L N L 9
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where ft(L) (x) is a time-varying Dy-dimensional differentiable function, AEL)

L)

is a time-varying

Dy, x Dy, real matrix and W,E is the t-th element of the process noise sequence {WI(L) }, which

consists of Dy- dimensional independent and identically distributed noise vectors.

2. Conditionally linear (or almost linear) dependence of all the available measurements on it - In
other words, these quantities, conditioned on ng), exhibit a linear dependence on XEL) (addi-

tional details about this model feature are provided below).

Then, x,gN) is generated by putting together all the components of x; that do not belong to XEL).

For this reason, generally speaking, this vector is characterized by at least one of the following two
properties:

a) Nonlinear dynamics - In particular, the update equation
N N N N) (L N
) = 6 (x) + A gl @

is assumed, where A,EN) is a time-varying Dy, x Dy real matrix, ft(N) (x) is a time-varying D y-
dimensional differentiable function and ng) is the t-th element of the process noise sequence

{WZ(N)}, which consists of D y-dimensional independent and identically distributed noise vectors

and is statistically independent of {WZ(L)}.

b) A nonlinear dependence of all the available measurements on it (further details are provided below).

In the following Section we focus on the so-called filtering problem, which concerns the evaluation of
the posterior probability density function (pdf) f (x;|y1.+) at an instant ¢ > 1, given a) the pdf f (x1)
referring to the system state in the first observation interval and b) the ¢ - P-dimensional measurement
vector

T

Yit = [y,{7Ygaay,tT] ) (4)

where y; £ [yo,y1, ...,yp—1]7 denotes the P-dimensional real vector collecting all the noisy measure-
ments available at time ¢. As already mentioned above, the measurement vector y; exhibits a linear

(nonlinear) dependence on XEL) (XEN)); for this reason, in the following it is assumed that

yi=h (XgN)) +C XgL) + e, (5)

where C; is a time-varying P x Dy, real matrix, h; (XEN)) is a time-varying P-dimensional function

(further details about this function are provided below) and e; the I-th element of the measurement
noise sequence {e;} consisting of P-dimensional independent and identically distributed noise vectors.
As it will become clearer in the following Section, it is useful to partition the vector y; (5) as

y; = [(yl(L))T’ (yl(NL))T7 (YZ(N))T]T7 ©)



where the Pp-dimensional vector y\™) £ [yéﬁ),yﬁx...,yEDLL)le]T (Py-dimensional vector y™) £

[y((){f), yif\p, ceey yglel]T) depends on xl(L) (xl(N)) only, whereas, generally speaking, the Py -dimensional
vector yl(NL) = [yéf}/L), yﬂm), ey ygjvvf)_l,l]T (with Py = P — Py — Pp) exhibits a mized dependence,
i.e. a dependence on both xl(L) and xl(N); in other words, we have that?
L L) (L L
yl( ):Cl( )xl( )+el( ), (7)
yl(NL) _ hl(NL) (XZ(N)) 4 Cl(NL)Xl(L) I el(NL) (8)
and
N N N N
yl( ):hl( )(xl( ))+el( ), (9)

where th) (xl(N)) (hl(NL) (xl(N))) is a Py-dimensional ( Py -dimensional) function, and CZ(L) (CI(NL))

is a time-varying Py, x Dy (Pnr x Dp) real matrix, and {el(L)}, {el(N)} and {el(NL)} are mutually
independent noise processes. Note that (7)-(9) implicitly rely on the assumptions that e; results from
el(N) Z(NL), and that the matrix C; and the function hy (XI(N))

the ordered concatenation of el(L), and e

are structured as
Cl(L) Op, x Dy
Cl = Cl(NL) OPNLXDN (10)
OpyxD, OPyxDy

i () = o (5 () (o ()] o

respectively, for any [; here O (Onxas) represents a N-dimensional (N x M) null vector (null matrix).

In the following it is also assumed that hl(NL) (XI(N)) is Pyr-dimensional differentiable function and

and

that the measurement noise sequences {er;}, {en,;} and {eyp;} are mutually independent, and are
independent of {wl(N)} and {wl(L)}.

0.3 Representation of the Filtering Problem via Factor Graphs

Generally speaking, the filtering problem for a system described by the Markov model f (x:+1 |x:) and
the observation model f (y:|x:) concerns the computation of the conditional pdf f (x¢|y1.+) (i-e., the
posterior pdf of the state x; given the measurement vector yy.; (4)) for ¢ > 1 by means of a recursive
procedure [7]. It is well known that, if the pdf f (x;) is known, a general Bayesian recursive procedure
can be employed; its I-th recursion (with [ = 1,2, ...,t) consists of the following two steps:

2Note that this partitioning of the measurement vector y; (6) has been inspired by the way the noisy data available at
the output of a communication channel are processed by a turbo decoder for a couple of parallely concatenated channel
codes. In fact, in that case the noisy data are partitioned in three blocks, one common to the two decoders for the
constituent channel codes, the other two feeding each a distinct decoder (e.g., see [30, Fig. 6]).



o Measurement update - Given the pdf f (xl |y1:(l_1)) (evaluated in the last step of the previous
recursion®) and the present measurement vector y;, the conditional pdf f (x; |y, ) is computed

as
1
f(xilyw) =f (Xl ’}’1:(171) ) Iy lxi) ma (12)
where
f (v |yia-y) = /f(YI Ix0) f (% [y10-1)) dxu. (13)

e Time update - The pdf f(x;|y1.1) (12) generated by the measurement update is exploited to
compute the pdf

f (i lyna) = / £ (i 130 £ (3 [y ) e, (14)

which represents a prediction about the future state x;41.

It is important to point out that: 1) the term 1/f (yl |y1:(l_1)) appearing in the right hand side (RHS)
of (12) represents a normalization factor; 2) both (13) and (14) require integration with respect to
x; and this may represent a formidable task when the dimensionality of x; is large and/or the pdfs
appearing in the integrands are not Gaussian; 3) this recursive procedure lends itself to be efficiently
represented by a message passing algorithm over a proper factor graph (FG) [5]. The derivation of the
FG mentioned in the last point rely on the fact that the a posteriori pdf f (x;|y1.+) has the same FG
as the joint pdf f (x¢,y1.t) (see [5, Sec. II]) and the last pdf can be computed recursively through a
procedure similar to that illustrated above, but in which the measurement update (12) and the time
update (14) are replaced by

fxuy) = f (xuyna-n) fyilx), (15)

and

(X1, y10) = /f(Xz+1 Ixi) f(x1,y14) dxy, (16)

respectively, so that the evaluation of the above mentioned normalization factor is no more required.
In fact, egs. (15) and (16) involve only products of pdfs and sums (i.e., integration) of products, so
that they can be represented by means of the FG enclosed in the dashed rectangle of Fig. 1 (where,
following [5], a simplified notation is used for the involved pdfs). Since this FG is cycle free, the pdf
f (x¢,y1.t) can be evaluated applying the well known SPA to it, i.e. developing a proper mechanism
for passing probabilistic messages along this FG (the flow of messages is indicated by red arrows in
Fig. 1). In fact, if the input message min; (x;) = f (x1,y1.1—1)) enters this FG, the message going
out of the equality node is given by [5]

My, (X1) = ming (x0) f (v %) 5 (17)

so that my; (x;) = f (x1,¥1.1) (see (15)); then, the message emerging from the function node referring
to the pdf f (x;41 |x;) is given by [5]

Mot (Xi11) = / F (ke [x0) iy (x2) dx, (18)

3Note that in the first recursion (i.e., for I = 1) f (x |y1:(l,1)) = f(x1lyro) = f(x1) and f(y; |y1:(l,1)) =
f(y1lyr:0) = f(y1), so that f(x1]y1) = f(x1) f(y11x1)/f (y1)-



Output message
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Figure 1: Factor graph for the evaluation of the pdf f (x¢,y1.+) (the subgraph representing (15) and
(16) is enclosed in the dashed rectangle). The SPA message flow is indicated by red arrows.

so that meut (Xi41) = f (X141 [y1:4) = Ming+1 (Xi41) (see (16)). Consequently, the pdf f (x¢,y1:)
(and, up to a scale factor, the pdf f (x; |y1.+)) results from the application of the SPA to the overall FG
shown in Fig. 1 and originating from the ordered concatenation of multiple subgraphs, each structured
like the one contained in the rectangular box of the same figure. In this case, the flow of messages
produced by the SPA proceeds from left to right, i.e. the pdf f(x;,y1.¢) is generated by a forward
only message passing. In principle, the desired pdf f (x,y1.¢) is computed as the product between two
messages, one for each direction, reaching the rightmost edge of the FG; one of the incoming messages
for that edge (denoted $7 (x;) in Fig. 1), however, is the constant function ¥ (x;) = 1.

Uunluckily, as the size D of x; (1) gets large, the computational burden associated with (12)-
(14) becomes unmanageable. In principle, a substantial complexity reduction could be achieved by

decoupling* the filtering problem for ng) from that for ng), i.e. the evaluation of f (ng) |y1:t> from

that of f (XEN) |y1:t>. In fact, this approach potentially provides the following two benefits: a) a

given filtering problem is turned into a couple of filtering problems of smaller dimensionality and b)
some form of computationally efficient standard filtering (e.g., Kalman or extended Kalman filtering)
can be hopefully exploited for the linear portion XEL) of the state vector x;. These fundamental ideas
have been exploited in devising marginalized particle filtering [2, 6]; as it will become clearer in the
following Section, they are also employed in the derivation of turbo filtering, which results, however,
from the application of different theoretical tools to the considered filtering problem. Before analysing
this derivation, the measurement and state models on which turbo filtering relies need to be clearly
defined; for this reason, these models are analysed in detail in the following part of this Section. To
begin, let us concentrate on the models involved in the filtering problem for ng), i.e. the evaluation

(V)
1

f (ng) Y1t ), under the assumption that the nonlinear portion x;"’ of the system state is known for

4Note that the coupling of the filtering problem for ng) with that for ng) is due not only to the structure of the

update equations (2) and (3), but also to the measurement vector yl(NL) (8), that exhibits a mixed dependence on the

two components of the state vector x; (1).



any /. In this case, the evaluation of the pdf XZ(L) can benefit not only from the knowledge of yl(L) (7),
but also from that of a) the new measurement (see (8))

~(L) & _(NL NL N NL)_(L NL
yl( )& yl( ) hl( ) (xl( )> = Cl( )xl( ) +el( ) (19)
and b) the quantity (see (3))

A £ 1 (V) = AL 1wl 2
which can be interpreted as a pseudo-measurement [6], since it does not originate from real measure-
ments, but from the constraints expressed by the state equation (3). This leads to considering the
overall observation model

L) ~(L L L
£ (v, 560,28 i

21)
L) | (L ~(L) | (L L) | (L (
(o ) (0 ) ()
for xl(L), where
(L) [ (D)) _ (L)
.f (YI ‘Xl ) - f (el ) egL):yl(L)fch)ng)7 (22)
S(L) [ (L)) (NL)
! (yl ‘Xl ) =f (el ) eL(Nw:S’z(L)*Cz(NL)xL(L) (23)
and (L) | (D) (N)
f(Zl ‘Xl ) = f(Wl ) Wl(N):Zl(L)—AEJ\”xEL) . (24)
If the observation model (21) and the state model (see (2))
f <L) ‘X(L)7X(N)
( 1+1 | %1 l (25)

e (51~ 61 () © Ax)

are adopted for XI(L), the graph shown in Fig. 2 can be used, similarly as the FG shown in the dashed

rectangle of Fig. 1, to describe a new recursion leading to the evaluation of f (xﬁL) ‘yg?, }7%), zgi) ),

under the assumption that the couple (XI(N), xl(ivl)) is known for any [. Is important to point out that

that:

e The graph shown in Fig. 2 is not a standard FG, but a mixed one, since it includes two

subsystems® (represented by dashed rectangles) which do not refer to density factorizations;

in fact, they represent the transformations from yl(NL) to Sfl(L) and from the couple (XI(N), Xl(ivl) )

to zl(L) (see (19) and (20), respectively). As it will become clear later, this has to be carefully

kept into account when deriving message passing algorithms.

5The presence of oriented edges indicates the existence of constraints in the message flow occurring in the represented
graph.
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Figure 2: Factor graph associated with the observation model (21) and the state model (25).

(L) ‘

e Generally speaking, the evaluation of the conditional pdf f (zl XE”) requires the knowledge

of the joint pdf of xl(fl) and xl(N) (see (20)), which can be evaluated as
f (xl(N) xl(+1) = £ (=™ /f xl+ ), l(L)> f (Xl(L)) dx{", (26)

where f (XH_ ‘ (N), )) is given by (33) (see below).

The same line of reasoning can be followed for the models involved in the filtering problem for Xl(N)

under the assumption that the linear portion ng)

this case the new measurement (see (8))

of the system state is known for any [. In fact, in

510 £ 3 - GV B () 1 o e
and the pseudo-measurement (see (2))
EN) £ xﬁ_) Al(L)xl(L) = fl(L) (XZ(N)) erl(L) (28)
are defined. This leads to the overall observation model
A ) =1 G R G R ) e
for xl(N), where
(N) [N _ (N)
f (yl ‘xl ) =f (el >‘e§N>=y§N>—h,FN>(x§N>)’ (30)
<(N) | J(N)\ (NL)
f (Yl ‘Xl ) - f (el )‘9§NL):S'§NLh§L) (xL(N>) ; (31)
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Figure 3: Factor graph associated with the observation model (29) and the state model (33).

and

N) | (N L
f(zl( )‘Xl( )) = f(wl( ))’ (L) (N)_p(£) (W) (32)
wy =z (xl )
If the observation model (29) and the state model

N) | (N L
£ () [0,

N N N N L (33)
o (28 () A5

are adopted for xl(N), the graph shown in Fig. 3 can be drawn, similarly as that shown in Fig. 2, to

NY | (N) =(N) (N
)’ygzt)’ (N) (

describe a new recursion leading to the evaluation of f (XE Vi 7Z1:t) ), under the assumption

that the couple (xl(L)7 xl(f_)l) is known for any [. Note also that, similarly to what has been explained

earlier about the conditional pdf f (zl(L) ‘XZ(L) ), the evaluation of the conditional pdf f (zl(N) ‘XI(N))

requires the knowledge of the joint pdf of xl(_]i)l and xl(L) (see (28)), which can be evaluated as

(R = 1 () [ 1 (05 £ () &

where f (xl(f_)l ’xl(L) xl(N)

Merging the FG shown in Fig. 2 with that of Fig. 3 (i.e., connecting the half edges labelled by the
same state variables) produces the FG illustrated in Fig. 4. This graph, on which the I-th recursion
of the algorithm proposed in this manuscript is based, is not cycle-free. For this reason, applying the
SPA to it unavoidably leads to iterative techniques producing approzimate results [9].

Finally, it is important to point out that the FG representation that can be adopted for deriving
new filtering techniques in the considered problem is not unique; this is due to the fact that the overall
FG of Fig. 1 can be partitioned into different subgraphs. For instance, the subgraphs appearing in

Fig. 2 (Fig. 3) can be modified by removing the portion referring to the pdf f (yl(N),Srl(N) ‘Xl(N))

) is given by (25).

(f (yl(L),yl(L) ‘xl(L)) ), i.e., their leftmost portion, and by appending a new portion referring to the
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pdf f <yl(ivl), Sll(ivl) ‘fof) (f (yl(f_)l, jll(_f)l ‘xl(f_)l)), then, merging these new subgraphs produces the FG
shown in Fig. 5, which, as shown in the following, leads to different filtering techniques.

0.4 Message Passing in Turbo Filtering

In this Section the turbo filtering method is illustrated first in its most general form. Then, a specific
implementation of this method, developed for the case of linear Gaussian systems, is devised and its
computational complexity is assessed.

0.4.1 Derivation of the turbo filtering technique

As already mentioned in the previous Section, the turbo filtering technique developed in this manuscript
results from the application of the SPA to the graph shown in Fig. 4. However, since this graph contains
a cycle, different options should be considered for message scheduling [9, 10]. The first scheduling
procedure adopted here has been inspired by marginalized particle filtering, as evidenced by the graph
shown in Fig. 7; the message flow occurring in the k-th iteration within the [-th recursion is illustrated

11
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models (21) and (29), and the state models (25) and (33).
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below for the considered graph (here k = 1,2, ..., N, where N;; denotes the overall number of iterations
accomplished in each recursion). In fact, in each iteration, on the basis of the message flow illustrated
in this Figure, the following tasks are sequentially accomplished: 1) measurement update for xl(N); 2)

(L N)
l

measurement update for Xl(L); 3) time update for both x ) and xl( . It is important to point out

that:

e The [-th recursion is fed by the messages n, (x(L)) and (X(N)), which have been generated in
the previous (i.e., in the (I — 1)-th) recursion and represent, up to a scale factor, approximations

of f (XZ(L) ‘Y1:(l_1) and f XZ(N) |y1:(l_1) , respectively. These messages represent the a priori
information available to the [-th recursion. For this reason, generally speaking, at the beginning
of the first recursion (i.e., for I = 1)

i <x<L>) - / F(x1) dxt™) (35)

and
1 (X<N>) - / f (x1) dx{®) (36)
must be selected.

e The [-th recursion produces the new messages 1741 (X(L)) and M1 (X(N)) at the end of its last
iteration.

e In any iteration,

fii (x(2) = fae (x¥) =1 (37)
is assumed, since no information comes from the next recursion (it is like having a couple of half
edges, one associated with xl(ﬁ)l, the other one with xl(ivl) ).

The proposed iterative technique consists of an initialization procedure followed by a message passing
procedure. A detailed description of both procedures is provided below for the [-th recursion.

Message passing procedure - This procedure consists of an ordered sequence of steps, in which
the messages labelling the arrows shown in Fig. 7 are evaluated; a general description of each step
is provided below for the k-th iteration; additional mathematical details are provided in the next
Paragraph for the case of a linear Gaussian system.

N k—1 L
() (1) (8

1. First measurement update for x;”’ - This step requires the knowledge of the message m

computed in the previous iteration; in fact, this message is exploited to generate, together with the
measurement vector yl(NL) (8), the message (%) (j'll(N)) (see (27)). Then, the last message is em-

ployed, together with the measurement vector yl(N) (9) and a portion of the observation model (29)

(see, in particular, (30) and (31)), to evaluate

Al (<) = [0 (57 1 (o507 ) a5

. K _ _ (38)

= (v ) fa (55) 5 (71 [V ) agt™.

Finally, multiplying ﬁzgk) xl(N)> by the a priori information my (X(N)) yields
mg’“) (xl(N)) = mg’“) (xl(N)) 1y (X(N)) . (39)
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X e (o X
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! v ﬁtk) (XI(NJ) J
f0 1m0 40 L () 10 () o (x0) § 00
S =
xw  Ma()=1 § () o (x) ) s T M)t 0
= 2 (2) -
->
) N )
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recursion e (x22) Delay recursion
e (x)
Figure 7: Message passing for the turbo filtering technique proposed in Paragraph 0.4.1. All the

quantities appearing in this figure refer to the k-th iteration of the [-th recursion; the messages available
at the beginning of the considered iteration are indicated by green arrows.
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2. Second measurement update for Xl N) _Tn this step the messages m(k D (xl(L)) and m(k D (xl(i)l)

can be exploited to evaluate any first order moment (e.g., the mean) of zl(N) (28)). However, the eval-
uation of any second order moment (i.e., the covariance matrix) or of the pdf of ZZ(N) (28) requires the

knowledge of the joint pdf xl(ﬂ and xl(L), which, in the considered iteration, can be approximated as
(see (34))

(s0) = g s “
) () ) 0 )

so that m _'(k 2 (xl(N)) is also needed. Then, given 773(F) (zl(N)) and the observation model (32), the
message

L (k N - N N N N
mé ) (Xl( )) = /m(k) (zl( )) f (zl( )‘Xl( )) dzl( ) (41)
is computed. Finally, multiplying this message by m A(k) (xl(N)) (39) gives
o (k N o (k N\ o (k N
mfl ) (Xz( )) = mg ) (xl( )) mé ) (xl( )) , (42)
(N)

which represents the overall output of the two measurement updates referring to x;,

(L)

3. First measurement update for x,™’ - In this step message m( ) ( Z(N)) (42) is exploited to

compute, together with the measurement vector yl( D (8), the message 1 (*) (S'I(L)> (see (19)). Then,
the last message is employed, together with the measurement vector yl(L) (7) and a portion of the

observation model (21) (see, in particular, (22) and (23)), to evaluate

il (x7) = fa® (587) 1 (v, 55 ") ag

43)
(L L) - L L L L) (
= (v ) e (57) 5 (319 <) agt.
. . . - (k) (L) L . — (L) .
Finally, multiplying m;" (%, by the a priori information m, (x ) yields
) (xl(L)> = (x(") i (x). (44)
4. Second measurement update for x - Similarly as step 2., in this step the messages m( ) (Xl(N))

and m ”(k 2 (Xl(ivl)) can be exploited to evaluate any first order moment (e.g., the mean) of zl (20)).

However, the evaluation of any second order moment (i.e., the covariance matrix) or of the pdf of zl(L)

20) requires the knowledge of the joint pdf x™) and X(N), which, in the considered iteration, can be
1+1 1
approximated as (see (26))

(N) (N) (N) (N)
f(xz Xz+1 fl ( Xz+1)

) (s50) . (<00 0 ) ()

(45)
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so that m _’(k 2 (xl(L)) is also required. Then, given m(*) ( ) and the observation model (24), the

message
() = [ () 5 (2 ) @

is computed. Finally, multiplying the last message by m(k) ( (L )) (44) yields

i (xP) = ) (x) a9 (x), (47

which represents the overall output of the two measurement updates referring to xl(L).
(N) (L) (N)

5. Time update for x,”’ and x;” - In the time update step for x;”’ the message

dék) (Xz+1> I f( Xi+1 ‘Xz ’Xz(N)>

48
) () ) (x0) axPaxf™ (4
is computed. Then, multiplying this message by ;41 (xV)) (see (37)) gives
o (k N o
) (Xl(+1)> = g’ (Xl+1) e (x)
L) (V) (49)
=ms (Xl+1) :
Similarly, the time update step for xl(L) aims at evaluating the messages
= (k (L) (L) (N)
ms ) (Xz+1) =/ f( X141 ‘Xz X ) (50)
T?LE; ) (XI(L)) mfl ) <xl(N)> dxl(L)dxl(N)
and (see (37))
o (k S (k L
g (Xl(+)1) = g (Xl(+)1) M () (51)

Note that the time update for xl(N) and that for xl(L) can be carried out in parallel, since they do not
interact.

6. Stop or get ready for the next recursion - After completing the previous step, the value of the
iteration index k is compared with N;;. If £k < N, the index k is increased by one and the next
iteration starts (this means going back to step 1. of the message passing procedure). Otherwise, if

k = N;, the messages
Mit1 (X(N)) = TﬁgN”) ( m) (52)

41 (X(L)) = ) (Xz(ﬂ) (53)

are generated. In this case, if [ < t, the recursion index [ is increased by one and the initialization
procedure for the next iteration is started; otherwise, if [ = ¢, the turbo filtering procedure is over.

and
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Initialization procedure - In principle, starting the message flow in the first iteration (corre-
sponding to [ = 1) requires the knowledge of the messages mff’) (xl(L)> (step 1 and 2), n'iflo) (xl(N))

(step 2), ﬁiéo) (X1(4L-)1> (or, equivalently, mgf)) (xl(f_)l), see step 2) and T?Léo) (x?ff)(or, equivalently,

n'iéo) (xl(ivl)), see step 4). Note that, on the one hand, no information is available about xl(ﬂ and xl(j_vl)
in the initialization; for this reason,
(0 L (0 L - (0 N - (0 N
A (x2)) = A (2) = A () = ® (x29) =1 50
and
m (zl(L)) =mm (ZZ(N)) =1 (55)
are selected. On the other hand, the only information available about xl(L) (xl(N) ) is expressed by
iy (x(B)) (1 (xV))) which, refers to the the prediction xl(fl)_l (xl(;\l[)_1 ) of xl(L) (xl(N) ) based on past
measurements (further details about this are provided in the following Paragraph), so that
T?lé(lo) (xl(L)) =my (x(L)) (56)
and
mfﬁ’ (xl(N)) =y (x(N)> (57)
are chosen.

0.4.2 Turbo filtering for linear Gaussian systems

Let us analyse now the application of the general procedure illustrated in the previous Paragraph to
the specific class of linear Gaussian systems. For this reason, in this Paragraph we assume that: a)

L N . . . .
wl( )} ({wl( )} ) is a Gaussian random process and all its elements have zero mean and covariance

C&L)(C&N)) for any I; b) {el(L)}, {el(N)} and {el(NL)} are Gaussian random processes having zero mean

and covariance matrices CgL), CéN) and CgNL), respectively, for any [. Under these assumptions,

(22)-(25) can be rewritten as

P b)) = (v el o). )
F(FP D) = (7175 e, e, (59)
L L L N L
7 (27 5P ) =& (275 APV %D, o) (60)
and
I (i e ™ o
L L N L L L
:J\/(xl(+)1;fl( >(x§ )) + AP ),Cﬁ,,)),
respectively. Similarly, (30)-(33) turn into
(™ ) = (v (V) e, (62)
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f (il(N) ‘XI(N)> =N (S/l(N);hl(NL) (xl(N)> 7CgNL)) (63)

7 (2 [<0) = & (A2 (x7) o)) (64)
and
P
N (Xl(ivl);fl(fv) (Xl(N)> n Al(N)Xl(L)’Cv(ﬂN)) ’ (65)

respectively. As far as the representations of the messages 173 (x()) and i, (x(*)) are concerned, the
following choices have been made. The Gaussian model

- L)Y _ (L), (L) (L)
my (x( )> —N(xl 7Xl/(171)’cl/(171)) , (66)
and the particle-based representation [7]
Np—1
i (x) = 37 ws (x ==} (67)
§=0

have been adopted; here, il(/L()l,l) and Cl(/L()l,l) denote the mean and the covariance matrix, respectively,

of the prediction xg/Llll of xl(L) based on the sequence of vectors yi.;_1), wi; denotes the weight

associated with the j-th particle xl(g) (with j =0,1,..., N, —1) at the beginning of the [-th recursion

and N, is the overall number of particles. It is also important to point out that:

e The turbo filtering procedure illustrated below is accomplished in a way that the functional form
of my (x)) (66) and i, (xV)) (67) is preserved from recursion to recursion (in other words,
the messages 141 (x(2)) and 741 (x)) generated at the end of the I-th recursion have the
same functional form as 173, (x(2)) (66) and i, (xV)) (67), respectively).

e For [ =1 (35) and (36) are replaced by its Gaussian projection
i (x) =& (x75x{, ") (68)

and its particle-based representation

Np—1
1 (X(N)> =Y wiyb (XSN) *Xg)) ; (69)
j=0

here, the mean fch)and the covariance CEL) are evaluated on the basis of the pdf f (ng)> =

ff(xl)dng), whereas the particles {XY\J[)} are drawn from f (ng)) = ff(xl)dng) (the
quantities {w; ;} represent the associated weights).

Under the above assumptions the message passing and initialization procedures for linear Gaussian
systems can be formulated in an elegant way, as illustrated below for the [-th recursion.

Initialization procedure - All that has been illustrated in the previous Paragraph for the initial-
ization in the most general case apply to this specific class of systems too. In addition, the following
steps are carried out:
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e Given (66), the quantities

(L) a(~@ T
Wia-n = (Cl/(l—l)) (70)
and (L) (L) o)
A A ~
W01 = WianXiyao) (71)

are evaluated.
—1 -1 -1
e The matrix inverses W) £ (CgN)) ) &2 (CgL)) ’ w2 (C‘("NL)) ’ w2
—1 —1
(CSUN)> and W) 2 (C,(UL)) are computed.

Message passing procedure - A description of the steps forming this procedure is provided below
for the k-th iteration (with k =1,2,..., Ny).

1. First measurement update for XZ(N) - This update step requires the knowledge of 77(¥) (Sll(N) ,
which is evaluated on the basis of j'/l(NL) (8) and the message T'riflk_l) (xl(L)) (122). Since yl(NL) is a

—

deterministic vector and mflkfl) (ng)) is a Gaussian message, it is easy to show that

> ~(N ~(N
i (317) = (3 g Oy ) (72)
T
where 7, ) = yl(NL) - CZ(NL)nflLl)kf1 and Cgov) = Cl(]\”:)CflLl)kf1 (CZ(NL)) ; from these quantities
Lk ’7 Lk ’7
& -1
Wy = Cyi,’Z) (%3)
and
N
Wy = Wa sy i

can be evaluated. Then substituting (62), (63) and (72) in (38) produces, after some manipulation
(see the Appendix for the evaluation of the integral appearing in the RHS of (38))

T
) () ocemp [ (0¥ () - oi2))

(N) (NL) (L (N) (N)
Wik (hl (Xl ik ] (75)

N (yl(N); hl(N) (XI(N)) ,CEN)) )
with

by

—1
wi), 2 WD [IDN — [WOVE W] WéN“] (76)

and (V) (V) (N)

A
Witk = Wl,l,knl,l,kil (77)
= WéNL) [WgNL) + WS'Z(ZZ):| Wyl(zvk).
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Then, substituting (67) and (75) in (39) yields
N,—1
(K N k - (k N N
) (xl( )) kMY s (Xl< >7Xl<,j>>, (78)
7=0

where .
_(k NL N N
wl( Y 2 wy,j exp [— (hl( ) (Xl(’j)) — 77§ l)k>

5]
N NL N N
WL (0™ () — i) (79)

N (v (<) .0

and K ék) is a proper normalization constant. Note that: a) the first measurement update modifies the

weights of the particles, but not the particles themselves; b) in each iteration, the initial values of the

particles representing the pdf of xl(N) are always the same, since they are specified by m; (xV)) (67).

2. Second measurement update for xl(N) )

- This update requires the knowledge of m*) (zl(N
see . Note that in the first iteration m Z = see , so that m X =1an

41)). Note that in the first iteration m® (z{") =1 55 hat 1" (™)) =1 and
n'iflk) (xl(N)> = mg’” (xl(N)) (see (41) and (42), respectively). In the following iterations (i.e., for

(L (L)

k > 1) the assumption of a Gaussian model for the random variables Xl+)1 and x;’ appearing in the

definition (28) of zl(N) leads to adopting the Gaussian model
ﬂ_i(k) (ZZ(N)> = N (ZZ(N); T]zglei) 5 ngNk)) N (80)
for zl(N) too. In the Appendix it is shown that

L L) (L
nzgfp = né,l,)kq - Az( )774(1,1,)1@71 (81)

and .
L L) ~(L L
nggj) = Cé,l?k—l - Az( )Ci,l?k—l (Az( )) ) (82)
where 774(1Ll?k—1 and néi)k_l (Ciﬁ)k_l and CéLl)k_l) are mean vectors (covariance matrices) defined at
step 4 and at step 5, respectively (see (122) and (141)).
Given 7 v (81) and C_(v) (82), the quantities
1,k I,k

W £ 0L, (83)
1,k Z

and
A
w_n =W _ann o (84)
1,k 1,k 1,k

20



are evaluated. Then, substituting (64) and (80) in (41) yields (see the Appendix, point 2., and, in
particular, (165) and (166))

il (x™) = J N (2Yim,00. € (N))
N(ZI(N);fl(L) (XN,Z),CSUL)> dz (N)

(85)
ox exp { (55 (™) )
N) (e(L) (L (N (N
Wi(%,l,k (fl (Xl )) Wsl)k)}
with )
w2 wb [IDL - [WSJP + Wzl(?} WQP] (86)
and
w) & W) (V)
W3 ik = 3,l,k773,l,l~cl (s7)
= Wq(UL) [W( ) WZ(N):| W, (V).
1,k 1,k
Finally, substituting (85) and (78) in (42) gives
Np—1
S (k N . (k N N
mfl ) (Xz( )) = Z wl(’j)é (xl( ) Xl(3)> , (88)
j=0
where
~(k k) ~(k Ly ( (N (N
i & ) o (89 () ) w“

wgf? (67 (=) = )]

and K. ék) is a proper normalization constant. Finally, it is important to point out that: a) the second
measurement update, like the first one, modifies the weights of the particles, but not the particles

themselves; b) since turbo filtering for linear Gaussian systems is devised in a way that the messages

(L)

about x;”” are always Gaussian and n‘iflk) (XZ(N)) is exploited in the evaluation of such messages, in

this step m(k) (xl(N)) is also projected into the (mean and covariance preserving) Gaussian message

. N N) (N N
m g;( ; )) N(Xl( )3774(1,1,)1«(34(1,1,)k>’ (90)
where
Np—1
N (k) _(N
a2 D ol (1)
§=0
and
Np—1
N N N N N
O e 3 ) (< ) (7~ )" 92
§=0

represent the mean and covariance matrix, respectively, of Xl( ) evaluated on the basis of m( ) ( ))
(88).
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3. First measurement update for xl - From (19) and m _'(k) (XZ(N)) (88), the message m(*) (yl(”)

can be easily generated in particle form as

Np—1
- ~ (L . (k (L) ~(L
mF) (YZ( )) = Z wl(,j) 0 (yg ) _ yl(,j)) ) (93)
j=0
where L NL NL) {_(N)
giy 2y —n™ (x()). (94)
forj =0, 1, ..., N,—1. However, as already explained above, message passing for xl(L)involves Gaussian

messages only, 7(*) (SIZ(L)) is projected into the (mean and covariance preserving) Gaussian message

il (:17) =N (31 imgeer Co ). (95)
where
s (Lk)— Z wlj ~l(?) (96)
and
Np—1 T
CS'Z(,L;C) £ z;) A(k) (yl(]) — 7N (L)) (5’1(5) - 77;,;}}9)) . (97)
j=

denote the mean and the covariance matrix, respectively, of yf“ evaluated on the basis of the pdf

mk) (SIZ(L)> (93). Then, the quantities
& (-1
Wsrl(ﬁj £ Cyfﬁj (98)
and
Y
W) = Wygﬁj g ) (99)
are evaluated. It is interesting to note that a less computationally demanding (but also less accurate)
alternative is also available for an approximate evaluation of the quantities 7z (96) and Cyw (97).
I,k I,k

This alternative is based on: a) rewriting §fl(L) (19) as

10 =30 —n (5 + ) (100)

N N N . . . .
where el( k,) £ xl( ) 774(1 l)k is modelled as a D y-dimensional Gaussian vector having zero mean and

covariance Cfll\{)k (92); b) adopting the first order Taylor approximation

e >( 0 e

(N
4
(101)
~ h(NL) ( ) Jh(NL) Lk El( k)’
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where Jj;vz) ;. denotes the Jacobian of hl(NL) (xl(N)) evaluated at xl(N) = ﬂily)k Then, substituting

(101) in (100) yields the approximate expression

—(L) o, ~(NL NL N N

yz( = yz( ) - hz( ) (Ui,z,)xc) - Jia<NL>,l,k€l(7k)a (102)
from which the approximate expressions

~ =(NL NL) { (N
g & g - (nz(il)k) (103)

sty

and v
Cyl“k) = Jh(NL),l7kcz(l,l,)kJ}7;<NL),l,k (104)

can be easily derived.
Given n‘i(éf) (yl(L)) (95), mg’“) (xl(L)> (43) can be evaluated as follows. Substituting (95), and the

pdfs (58) and (59) (referring to yl(L)|xl(L) and SIZ(L)|XZ(L), respectively) in (43) and keeping into account
that f (yl(L)|xl(L)) can be rewritten as

(7 40

L INT ()@ INT (L) (L
o (o (o) i) o) iy

N )
((Cl ) wic; )

yields, after some manipulation (see the Appendix, point 1., and, in particular, (154) and (155)),

(105)

Sk L L) (L L
mg ) (Xz( )) :N<Xz( )377§,z?kyc§,l?k) (106)
with .
Wi, % () WG wit, o
and .
L L L L L L
Wil?k £ Wil?kﬁil?k = (Cl( )) WgL)Yz( )+ W((J,l?k' (108)

Here, Wéﬁ?k and wéﬁ?k are given by (see the Appendix, point 2., and, in particular, (165) and (166))

T
wit, 2 (e wi
NL)| " e (NL NL (109)
. |:IPNL — |:W5./l(z;c) +W£ ):| Wg ):| Cl( )

and L) L) (L)
A
. Wolk = WO,l,knO,l,k ) (110)
= (c") WP W + WY,
Yk Yik
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respectively. Finally, substituting (106) and (66) in (44) produces (see the Appendix, point 1., and, in
particular, (154) and (155))

) (Xl(L)) =N (XL,z,Ug,Lz?kan,Lgk) ; (111)
with )
Wik 2 (Chik) = Wijooy + Wik (112)
and
Wéﬁ?k £ éLl)knéli)k = Wz(/L()z—1) + Wng)k: (113)
4. Second measurement update for xl(L) - This update requires the knowledge of m(¥) (Zl(L)> (see

(46)). In the first iteration m (Y (zl(L)> = 1 (see (55)), so that mgl) (xl(L)> =1 and mf{“) (xl(L)) =

ﬁ'Lék) (xl(L)> (see (46) and (47), respectively). In the following iterations (i.e., for k¥ > 1) the Gaussian
model

mk) (ZZ(L)) = N(ZI(L); 7, CZ(L)) (114)
Ik 1k

is adopted. In the Appendix it is proved that the mean n, and the covariance matrix C_z) of zl(L)
1,k I,k

are given by
N N N
nzfﬁﬁ = Wé,z,)k—1 - fz( ) (774(1,1,)k> (115)

and
N N T
C,m = Cg,l,)k—l - Jf<N>,l,kCi,z,)k (I 15) (116)
respectively, where nﬂi)k and nézy)k_l (Cfll\lfv)k and Cé{\l/)k_l) are mean vectors (covariance matrices)
defined in this step and in the following step, respectively. From 7 ) (115) and C ) (116) the
1,k 1,k

quantities
W o, £C 4, (117)
%1k 21k

and
A
W = WZ;,LI;)T]ZZ(,Lk) (118)

are evaluated. Then, substituting (114) and (60) in (46) yields (see the Appendix, point 2., and, in
particular, (165) and (166))

il (x7) =& (x5l €. (119)

with -
Wil (A) Wi

1 (120)
. |:IDN - [Wzluk) + Wz(uN)] WSUN)} Az(N)
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and (L) () (1)
A
W zk_W3zk773zk

(A W g W -

Finally, from (47), (111), and (119) it is easily inferred that (see the Appendix, point 1., and, in
particular, (154) and (155))

S (k L L) (L L
mz(L ) (Xl( )) :N( ( )’774(1 l)kﬂcé(l,l?k) ) (122)
with )
L L)\~ L L
Wz(l,l?k = (Ci,l?k) = Wé,l?k + W:(al)k (123)
and (L) (L) (L) (L) (L)
W4,lk*W4lkW4lk*W21k+W3lk (124)

5. Time update for xl(L) and xl(N) This update generates the messages m(k) (xl(ivl)) and m (k) (xl(f_)l)
The first message is evaluated on the basis of (48), which requires a double integration. We ﬁrst focus

on the integral
/ (XH_) ‘ , X N)> rh’ik) (xl(L)) dxl(L) (125)

and substitute (65) and (122) in it. This produces the function (see the Appendix, point 3., and, in
particular, (167), (168) and (169) )

g1k (Xl(N) Xl+1) = fN (X 7771(1Ll)k704(1,Ll?k)

N(Xl(ivf,fm (XZ(N)) + AN (D) c“V)) ax(D)

o exp [ (ngg o) (x0))" (126)
() (-0l ()]
where ;
i 2 e+ afMcth), (A (127)
and
771(“73( (N)) ANy 4 ) (XI(N))' (128)

Then, the RHS of (48) can be rewritten as

mgk (Xl+1> = [ gk ( Xz(ivf)

129
7 (<) . (129

The integration appearing in the RHS of the last expression can be easily carried out, thanks to the
structure of mf{“) (xl(N)) (88). Actually, as already mentioned above turbo filtering is expected to

preserve the functional form of the output messages generated by each recursion; as it will become
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clearer later, this result can be achieved for xl(N) expressing mé ?) (xl(+1> (129) in particle form. A

particle list together with its list of weights for the last message can be generated using a weighted
sampling procedure (see [4, Par. III.A]), which consists of the following steps: a) for p =0,1,..., N, —1

select the point XZ(N) in the particle list contained in 17" (xl(N)> (88); b) draw a sample® Xl(ivl),k:,p
from g (xl(p),xgivn (note that, for a given xl(N), g1k (+,+) is a Gaussian function and that the

set of particles referring to X1(1+V1) change from iteration to iteration) assign to xl(ivl) kp @& probability

ok ) . This procedure generates the message

S (k) (L(N Np—1 o (k N N
A () i 0 e 2,

proportional to w;

130)
LR (N (
— ) ().
Finally, m (k) ( (N )> is projected into the (mean and covariance preserving) Gaussian message
) N N), (N N - N
éG (Xz( )> =N (Xl(Jrl)’né z)k’ Cé,l,)k) = méé (Xz(ﬂ)) (131)
where
(k) (N
é Z l,j Xl(+1) k,p (132)
and
Np—1 r
N (K N N N
Cé,l,)k 2 Z wz(g) (Xl(+1),k,p nél)k> <X1(+1) k,p 77&25)> (133)
p=0

represent the mean and covariance matrix, respectively, of x™) evaluated on the basis of 77 "'(k) (XI(N))

I+1
(130).
The evaluation of m _'(k) (xl(i)l) is based on (50), which, similarly as (48), requires a double integra-

tion. We first take into cons1deration the integral

/ 7 () [ %) P (2 ™ (134)

and substitute (88) and (61) in it. This produces

B )Y = (k N N
Jf(x l+1 ), ) ( ! (x! )> dxz( : (135)
_ e gl (xg_a, £ (ngp) + A(OXD, )
Then, substituting the last result and (122) in (50) yields
(k L Ny—1 . (k Ly, (L L
mé) Xz(+)1 —Zj =0 iy )fN ( )»774(1 l)k’cé(l,l?k (136)

-N( l(+>17f<L>( (N)) +A( x(* ) Cg)) dx),

6Note that resampling can be accomplished after this step in order to mitigate the effects of the so called degeneracy
problem |7, 31].
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Then, it is not difficult to show that (see the Appendix, point 3., and, in particular, (168) and (169))

P (<, 88, - (<580 (<) + AL, 040

137)
(k) [ (N) k) (
_N( l+1’771l) ( z(] )7C§,l)7
where "
c) 2 b+ aPcl, (al) (138)
and k N L) (L L N
775 ) ( ( )> 2 Af )774(1 l)k: +£ (Xz( )> : (139)
Finally, substituting (137) in (136) produces
o (k L Ny—1 - (k (N (k
A (49) = SN (4882 (57) 1) -

—»(k) (L)
= Mmyg (X1+1)

which, unluckily, is a Gaussian mixture. However, in our filtering technique this Gaussian mixture

is replaced with a Gaussian pdf preserving mean and covariance [16], so that the Gaussianity of

ﬁzl(_lf_)l (x( )) is preserved. This leads to the new message

it el o o

X1 5,060 “5,0k

where
Np—1
(L) 2 ~() (k) (L (N)
M50k £ Z ljk M ( X1 ) (142)
j=0
and 0 _ o®
Gk = Cui (143)
(k) (L (N) (L) (k) (L () (L)
Jrzgo Ik (771z(lg> nslk) ("1l(ng) 7751k) -
6. Stop or get ready for the new recursion - This step is the same as that described in the previous
Paragraph.

Finally, it is important to point out that:

e The processing accomplished in the measurement and time update for xl(L) can be interpreted

as a form of ’soft’ Kalman filtering, since, unlike standard Kalman filtering, a portion of the
available measurements (and, in particular, the information referring to zl(L) (20) and ¥ "(L (19)
is not deterministic, but of probabilistic nature.

e The TF algorithm derived above is denoted TF #1 in the following, since other two TF tech-
niques, based on the same line of reasoning illustrated above, are developed in the following
Paragraph.

27



From the From the
previous xI(N) xl('-) previous
recursion fZE"”X?“’ ey Foomee : A9 recursion
A (x) R — x| Ao (x)
M (x™ Ll - ) N > m, (x
| ( ) <-- <-- : z‘”” : m;k 1)(X§L)) : z:“ s -—> ( )
_ 70 (200} 1 1 e (20 _
frd | L il Lo 1 =
Delay A S0 ()
L (xV)
J I\ mgk)(xlﬂ.))
m(k)(x(N)) ! k”‘)N \ R N <-- ¢ m;“’(x}“)
2 M)y my )(XI( J) Vi
L) § (4 ()
f -->
X I — <-- > fx\(Ll)/xiu X"
&m0 () A (x) A (x) ¢
<-- - M (<) = >
) (1)
0 (5 M5 (i
M (Xm) — Delay I) mék)(x{;) ( )
<--
A () Delay
mzk—l)(x‘(L )
(NL)
(N) I+ (L)
I+1 fy(mvy([«),xwy I— = f (L) (L) (L) M
1 Vi X Yid 91 X
T :
|
DA y,‘j‘; X
| H .
A (x(V ! <-- ! R (x©
(0 )v mo(70)i I e v (x2)
________ '
M (x)
Gl X v (x4
mH(X(N’):l v e ( 1) ( )V mm(x‘“):l
(N) — — (L)
Xiug <-- = Delay = > X1
(<) ()
To the next e (x(1) To the next
recursion recursion

Figure 8: Message passing for a TF algorithm (called TF #2) developed on the basis of the FG shown

in Fig. 5. All the quantities appearing in this figure refer to the k-th iteration of the /-th recursion;
the messages available at the beginning of the considered iteration are indicated by green arrows.
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0.4.3 Other filtering technique

As already mentioned at the end of Section 0.3, the FG shown in Fig. 5 can be employed in place of
that shown in Fig. 4; for this FG different scheduling procedures, leading to distinct TF algorithms,
can be considered. It is important to note that

e The FG of Fig. 5 can be partitioned in two subgraphs. On the one hand, the first subgraph
consisting of upper part of the given graph and message passing over it allows to process the
pseudo-measurement zl(L) and zl(N) to generate probabilistic information about xl(i)l and xl(ivl) .
On the other hand, the second subgraph consists of the remaining part (i.e., of the lower part) of
the same graph and message passing over it can be employed to refine our probabilistic knowledge

(L) (N) (L) (V) (NL)

of x;/7 and x;,/{ on the basis of y;\"}, y; .| and y;\ ;.

e In developing novel filtering techniques multiple passes can be accomplished within the first
subgraph before passing messages to the second subgraph; similar considerations hold for message
passing from the second subgraph to the first one.

On the basis of these considerations, two different scheduling procedures have been considered in the
following for the message flow in the FG of 4. In the first procedure a single pass is accomplished
within each subgraph but, generally speaking, N;; passes accomplished within the overall graph; the
corresponding message flow for the k-th iteration of the [-th recursion is shown in Fig. 8. On the
contrary, in the second procedure N;; ; iterations accomplished within the upper subgraph are followed
by Nj: o iterations carried out within the lower subgraph; then, the resulting statistical information
are passed to the next recursion. The resulting filtering techniques are denoted TF #2 and TF #3,
respectively, in the following. Note that, unlike TF #1, mathematical expressions are not provided
below for the messages evaluated in these additional filtering techniques, since they can be easily
developed from those already derived for TF #1. In Section 0.5 the three TF options are compared
in terms of performance in specific cases.

0.4.4 Computational complexity of turbo filtering for linear Gaussian sys-
tems

In this Paragraph the computational complexity of TF #1 is analysed”. Following [17], in assessing
the overall computational load of a single iteration of our filtering technique, only the messages and the
procedures influenced by the number of particles N, have been taken into consideration, since provide
the dominant contribution to the load itself. For this reason, the number of sums, products and other
operations have been evaluated for the following tasks (see Table 1):

1. Computation of the message ﬁ’zflk) (xl(N)> (88) - In particular, the complexity required for the

evaluation of u?l(lj) (79) (contribution # 1.a), QI)Z(};) (89) (contribution # 1.b), and 774(157,)1@ (91) and

Cflf\li)k (92) (contribution # 1.c) have been assessed.

2. Computation of the message mék) (xl(L)) (140) - In particular, the complexity required for the

evaluation of néLl)k (142) and CéLl)k (143) has been assessed (contribution # 2).

"The computational complexity of TF #2 is similar to that of TF #1, whereas that of TF #3 can be easily evaluated
following the same line of reasoning as TF #1.
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’ Contribution # \ Sums Products \ Other ‘

2P%, N,+ 2P2 N,+
l.a NLP NLp 2N, + N,Fn
2D12V1gp + 2N, 2D% N, + 2N, p T AYpUhn
3D2N,+
1.b N, DLL f N, 2D2 N, + 3N, N, + N3t
1.c N,Dy +2N,D% N,Dy + N,D%
2 2
) 2éNZ,DL+ 2£VPDL+ N, Ge,
2D2 + N, Dy, 2D? + N, Dy,
DnD? + D3, D+ DyD? + D3 Dr+ .
3 NpDNDL + NpDJQV+ NpDNDL+ F CESN 3
[ f;
2D% + 2N, Dy N,D% chot TP
4 N,Dy + 2N, D% N,Dx + N,D%

Table 1: Computational complexity of different procedures contained in TF #1 for linear Gaussian
systems; the main tasks carried out in a single iteration are considered.

3. Particle generation and resampling procedure accomplished at step 5. (contribution # 3).

= (k)

4. Computation of the message 1y (XI(N)) (130) - In particular, the complexity required for the

evaluation of né]\l[)k (132) and Cé]\l])k (133) has been assessed (contribution # 4).

Note that in Table 1 Fn,, ,5¢ and Fr,denote the computational complexity associated with the
evaluation of the functions hl(NL) (XI(N)), ft(L) (ng)) and ft(N) (xEN)), respectively, whereas §cpor
represents the complexity of the Cholesky factorisations of the matrix Cl(;qk) (127) (this is required at

step. 5, when generating a new set of particles {xl(ivl)kp})

If we now assign a unit weight to all the operations considered in Table 1, conventionally assign
the complexities Py, Dy, and Dy t0 $hy, 85, and §gy, respectively (in other words, the complexity
of each of these functions is deemed to be proportional to its size), and neglect §cpo( (since this is not
influenced by N,), the estimate

Crr (Dr,Dn,Ny, P, PN, Pnp) =

(4P%; +12D% +8+9D2 + 7Dy, + 8Dy +2Dx Dy, + 2Py 1, + Cres) N, (144)

can be easily obtained for the computational complexity, in terms of floating point operations (flops),
of a single iteration in turbo filtering; here, ¢,..s represents the contribution of resampling to flop count
[17]. The corresponding estimate for marginalized particle filtering, evaluated on the basis of [17, Table
I, p. 4409, is

Crypr (Dr,Dn,Np) =
(DLDN+6D12V+2D%+DN—DL+DN63+01+ (145)
c2 +4DnD3 + 8D D% + 5D3 + 6D} ) Ny,

where c1, co and c3 refer to the computation of the Gaussian likelihood, of resampling and of random
numbers, respectively. Note that C'y;pp is dominated by various cubic terms appearing in the brackets,
which do not appear in Crp; this evidences that the latter complexity should be expected to be
substantially larger than the former one when the size of the state vector is large.
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TF #1 | TF #1 | MPF
Niy =2 | Ny =3
x| 0.0990 | 0.0985 | 0.0875
™M | 01356 | 0.1345 | 0.1311

Table 2: RMSE performance provided by TF #1 and MPF for the considered system.

0.5 Numerical Results

In this Section TF is compared with MPF in terms of accuracy and complexity for two different linear
Gaussian systems.

0.5.1 System A

The first system we consider (denoted system A in the following) is characterized by: a) the state
model

(V)
@ _ [ (“’”t ) 103\ (@) (L)
e T —sin (af™) Lo 092 )X W (146)
$§f1) = arctan x,EN) + (1 0.5) XEL) + wt(N), (147)

where ng) ~N(0,CY) and wt(N) ~ N(0,C) (consequently, D = 3, D, = 2 and Dy = 1); b) the
measurement model

N N
0.1 (m% ))2-sgn (:vg )) 0 0
v, = 0 1 -1 | %P te, (148)
14 cos (xiN)) 10

where e, = [, &™) eVINT with el ~ N(0,C)), eV ~ N (0, and NF) ~ N (0, CVE))
(consequently, P = 3 and P, = Py = Pyr = 1). In our simulations the root mean square error
(RMSE) performance provided by TF and MPF for the considered system has been assessed under
the following assumptions: a) Ci) = 0.1I,, C&") = 0.2; b) C{¥ = ¢ = ¢M*) = 0.01; ¢) N, = 200
for both the considered filtering techniques (a minor improvement has been found with larger values
of Np); d) the “jittering” technique [2] has been employed in TF to mitigate the so called depletion
problem in the generation of new particles (in practice, a value larger than the real one is taken for
C™) when evaluating Cf?,z (127)). Some numerical results are listed in Table 2, which shows the
RMSE referring to the linear and the nonlinear portions of the system state when TF #1 or MPF are
employed. These results lead to the conclusion that TF #1 performance marginally improves after
two iterations and is close to that achieved by MPF. The good accuracy provided by TF #1 is also
evidenced by Fig. 9, which shows a realization of the state evolution for the considered dynamic model
over 50 consecutive intervals (black curves) and the state estimates evaluated by the TF with N;; =3
(red curves). As far as the computational load is concerned, from (144) and (145) it is easily inferred
that Ny - Crpgr = 2.3-10° with Ny = 2 and Cypp = 2.306 - 10°, so that a marginal gap is found
(this gap widens substantially as D increases, as evidenced below in Section 0.5.3).
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Figure 9: Example of state evolution for the dynamic model (146)-(147) (black curves); the corre-
sponding state estimates evaluated by TF #1 with N;; = 3 are also shown (red curves).

0.5.2 System B

The second considered system (denoted system B in the following) is characterized by: a) the state
model

wgf_)l = cos (a?gN)) + 0.5x§L) + wt(L), (149)
x,gl) = sin (ng)) + O.5x§L) + w,EN), (150)

where w(™) ~ N(0,C)) and w™ ~ N (0, CN) (consequently, D =2, Dy, =1 and Dy = 1); b) the

measurement model

0.1 (ng)) 2. sgn (xEN))
yi = 0 +1 1 |2 1e, (151)

1+ cos (x,gN)) 1

where e; = [eEL), eEN), eENL)]T, with egL) ~ N(0, C’éL)), eEN) ~ N(0, C’éN)), and eENL) ~ N(0, C’éNL))
(consequently, P = 3 and P, = Py = Pyr = 1). In our simulations the root mean square error
(RMSE) performance provided by TF and MPF for the considered system has been assessed, similarly

to the System A (Section 0.5.1), under the following assumptions: a) o = oM = 1072; b)
Ce(,L) = C,EN) = CéNL) = 1073; ¢) N, = 200 for both the considered filtering techniques; d) the
“jittering” technique [2] has been employed in TF to mitigate the so called depletion problem in the
generation of new particles (in practice, a value larger than the real one is taken for C’f,,N) when

evaluating Cl(gk) (127)). Some numerical results are listed in Tab 3, which shows the RMSE referring to
the linear and the nonlinear portions of the system state; MPF and all the developed TF algorithms
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TF #1 | TF #1 | MPF
Ny=2|Nu=3
2 1 0.0455 | 0.0420 | 0.0398
2™ 1 0.0274 | 0.0273 | 0.0273
(a) TF #1 and MPF.

TF #3 | TF #3 | TF #2 | TF #2
Niti =2 | Ny1=3| Nyuy=2| Ny =3
Nito=2 | Njyyo=2
7 1 00402 | 00395 | 0.0391 | 0.0391
! 0.0273 | 0.0273 | 0.0289 | 0.0289
(b) TF #2 and TF #3.

Table 3: RMSE performance.

have been considered in this case. These results lead to the following conclusions: a) the performance
of TF #1 (TF #2) marginally improves (does not improve at all) after two iterations and is very close
to that achieved by MPF; b) the TF #3 performance with N1 = 3 and Ny, s = 2 is even better than
provided by MPF. As far as the computational load is concerned, from (144) and (145) it is easily
inferred that Ny - Crpg1 = 2.15- 10° with N;; = 2 and Cypp = 2.17 - 105, so that, once again, a
marginal gap is found (similar comments hold if TF #2 or TF #3 are considered in place of TF #1).

0.5.3 Other results

Comparing TF # 1 with MPF, the gap previously found in the computational load for the two specific
system taken into consideration widens substantially as D increases, as evidenced by Fig. 10. This
figure allows us to compare the trend of TF complexity (N;; - Crpg1 with Ny, = 2) with that of MPF
(Carpr) as Dy increases for three different values of the ratio R £ Dy /Dy ; in this case Pyr = 1 has
been selected in (144) for simplicity and N, = 200 has been adopted for both algorithms.

0.6 Conclusions

In this manuscript a FG approach to the filtering problem for mixed linear/nonlinear systems has
been employed. This has resulted in a novel recursive filtering method, dubbed turbo filtering, whose
application to the class of linear Gaussian systems has been analysed in detail. Our preliminary
results evidence that the performance achieved by this method is close to that of MPF; its complexity,
however, can be significantly smaller if the size of the state vector representing the considered system
is large. Our ongoing research work concerns the development of turbo filtering algorithms for other
classes of systems and its application to specific state estimation problems.
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Figure 10: Overall computational complexity of TF #1 (with N; = 2) and MPF versus Dy for R =1,
1/2 and 1/3; N, = 200 has been selected for both techniques.

0.7 Appendix A

In this Appendix the derivations of some expressions employed for the evaluation of turbo filtering
messages are sketched. Such derivations and those mentioned in the previous Sections are based on
the mathematical results summarized in the following four points.

1. If the Gaussian messages m; (x) = N (x;m1,C1) and my (x) = N (x;72, C2) enter an equality
node in a FG, the resulting message is 3 (x) = 11 (x) - 179 (x) = N (x;7, C), with (see [5, p.
1303, Table II])

cl=c/t+cyt (152)
and
Cl'n=Cilm+Cyln. (153)
Note that: a) (152) and (153) can be rewritten as
W =W, +W, (154)
and
W =W + Wao, (155)

respectively, where W £ Cl_l, W, 2 C;l, W £ CcC 1wy £ Win, wo £ Wy, and w £ Wi

2. Given the pdf f(y) £ N (y;m1,C1) and the conditional pdf f (y |x) £ N (y;g(x),Cy) for the
N-dimensional vector y, where g (x) is a real valued function of the M-dimensional vector x, it
can be proved that

J 1) F (v Ix)dy o< exp |~ (g () )" (156)
C; 1 (g (%) — )]
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where

_ _ _ =1
c;l=c;! [IN ~[ct+ e 1} (157)
and .
Cylng=Cy' [CTT+ Gy Cyl. (158)
The last two equations can be rewritten as
W, =W, [IN — Wy + W) ! WQ} (159)
and
W, = Wy [W + Wy ' wy, (160)

respectively, where W, £ Cfl, W, £ C;l, W, = C;l, Wy = C;lng and w; £ Wyn;. If the
function g (x) exhibits a linear dependence on x, i.e.

g (x) = go + Gx, (161)

where gg is an N-dimensional vector and G is an N x M matrix, it can also be proved that

/f(y) F(y 1) dy o< N (%7, Cs) (162)

with
C,'=G'c;'G (163)

and
C.'n. = G:TC;1 (ng — 8o) - (164)

Similarly as the previous case, the last two equations can be rewritten as (see (157)-(160))

W, = GTW,G

- GTW, [IN W+ W WQ} G (165)

and
w, = GTW, (1, — g)-
=GTW, [W; + Wy wy (166)
—GTW2 {IN — [Wl + WQ]_I WQ} £0,

respectively, where W; £ C7', W, 2 C;1, W, 2 C; ', w, 2 C; ', and wi 2 Wy,

. Given the pdf f(x) £ N (x;m1,C;) for the M-dimensional vector x and the conditional pdf
f(y|x) 2 N (y;g(x),Csy) for the N-dimensional vector y, where g (x) is expressed by (161), it
can be proved that (e.g., see [14, Par. 2.3.3]):

/ F(x)- f(y[x)dx = N (y;n,,C,) (167)

with
C,=Cy+GC;G” (168)

and
ny = G + go. (169)
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4. Given the pdf f(x) £ N (x;7m1,Cy) for the M-dimensional vector x and the conditional pdf
f(y|x) = N (y;g(x),Cs) for the N-dimensional vector y, where g (x) is expressed by (161), it
can be proved that (e.g., see [14, Par. 2.3.3]) the covariance matrix of the joint distribution is:

C. _ C C,GT
Y GC; Cy+ GchT
Let us now show how some of these results can be exploited to derive some results not proved in

the previous Sections. In particular, we first take into consideration the derivation of (75), (76) and
(77); this requires the evaluation of the integral (see (38), (63) and (72))

[ (3) s (y““ ") dgi™
ZfN(S’l( 11500, Cg (N)) (170)
N (S’I(N);hENL)( <N>) C(NL)) g ™.

Then, from (156)-(158) it can be easily inferred that
[m® (5’1(N)) ( N)‘ ) d§n.

N

M,

X exp [— (hl( )< l( )> 1k ) (171)

WL (B (x7) =) -

where W1 1k and 771 I k are given by (76) and (77), respectively. Finally, substituting (62) and (171) in
(38) yields (75). Note that a similar procedure followed for deriving (75) can be also adopted for the
evaluation of the integrals appearing in the RHSs of (85) and (126) (for which, however, the results
illustrated at point 3., instead of point 2., are used).

Let us takes into consideration now the derivation of (80), (81) and (82). To begin, we note that
(see (80))

(N e L) (L
)2 B AE D)

2N & (172)

3

so that averaging with respect to the the messages m(k 2 ( (L)) and mﬁkal) (xfﬂ) (see (122), (141)

(N) -

and Fig. 7) produces (81). Consequently, the covariance matrix C, v of z; "’ in the same iteration is
1,k

given by
G = B{[(x ~ AP) = (5 AP, )]
(8- AP = (s - AP
— e { (-8 )) ~ AP (3 08 )
(48 a8 - A<L>(<> i)} o

(L) (L) r (L) @\’
A (Cll+1k> Cll+1k(Al ) )
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where

L L L L T
l,l+1,kéE{[xl(+)1 775(, l)k 1} { | )_774(1 z)k 1} . (174)

Unluckily, the evaluation of Cﬁil x (174) requires the knowledge of the joint pdf of the random

variables Xl+1 and xl(+)1, note that this pdf cannot inferred from m(l€ D (xl(L)> and m, H(k D (xl(ﬂ),
(L) (L)

unless the random variables x; and x; | are assumed to be independent. A more refined alternative
to making the last assumptions is represented by approximating the joint pdf of the random variables

xl(JLr)1 and XH)1 with the function fj x ( (L) xl(+)1) (40), which involves mflk 2 (XI(N)> (whose flow into
the dashed block generating Zz( ) is not visible in the graph), but is not influenced by 7, ﬂ(k R (xl(JLr)l)
In our derivation, the Gaussian projection mflkal) (xl(N)> of Hik_l) (xl(N)) is employed (see (90)), so

that the integral appearing in the RHS of (40) is approximated as

il f( 1‘Xz xl(N)) .mflk—ﬂ( (N)) dx)

175)
~ L) (L N L) (L L N). (N N N (
= [N (<Y (x) + A C) - (3l Ol ) ™.
In the last integral we adopt the further approximation
~ (L N N N
fL (XN,l) = fl( ) (Xl( k) 1) + ']f(L),l,k—l (Xl( ) nA(ll)k 1) (176)

over the whole integration domain, where J F) 1 k-1 denotes the Jacobian of fl(L) (xn,) evaluated at

xl(N) = ni]}])k Exploiting this approximation, the mathematical results illustrated at point 3. (see,

in particular, (168) and (169)) in the evaluation of (175) leads to the expression

L L N S (k—1 N N
[ 7 (B [ ) ) () anf

_ ~ (177)
=N (XI(JLr)l;nk (xL.1) 7CI(CL)) ;
where
_ L N L
7*) (Xz( )) = 3wk Mg + 6 (nz(Ll)k 1) — I g + AL XY (a78)
Ly ( (N L) _(L
0 (1h,) + AL
and 0 N .
G = C + T 16 O (T i) (179)
Then, substituting (122) and (177) in the RHS of (40) yields
D\ ~ k L L = (L
fur (37300 ) =N (saimit] 1 CSF ) N (i) (ee) . €FF) (180)

On the basis of the last expression, (178) and the mathematical results illustrated at point 4., it is
easy to show that Cl 41k (174) can be approximated as

37



L ~ A (L) ~(L
Cl(,z)+1,k = Al( )Cfl,l?kfh (181)

so that substituting the last result in (174) produces (82). Note that this result is independent of
n'iflkg b (XI(N)), which, consequently, is not required in the evaluation of m(¥) (zl(N)) (80) (as shown
in Fig. 7).

A similar line of reasoning can be followed for the message 7 (ZZ(L)> (114), whose evaluation in
the k-th iteration involves T?Lflk) (XZ(N)) (88) and n'iék_l) (xl(ivl)> (130). To simply the derivation of this
message, the first order Taylor expansion

N N ~ (N N N N
fz( ) (Xl( )> = fz( ) (774(1,1,)1@) + Ik (Xz( )~ 774(;’;,);@> (182)

is employed, where J ) ;; denotes the Jacobian of fl(N) (xl(N)) evaluated at xl(N) = nfl]\l/)k‘ This

allows us to approximate zl(L) (20) as
L N N\ ~ (N N N N N
Zl( = Xl(+1) —fny (Xz( )) = Xl(—i-l) - fl( ) (7751,1,)k> —Jrn e (Xl( )~ 774(1,1,);@) (183)

From the last equation the expression (115) is easily derived for the mean 7 () of zl(L) in the k-th
Lk

iteration. Moreover, the covariance matrix C_z) of Zz( ) in the same iteration is given by
L,k

N N N N
Gy = B[~ 851-2) 3y as (7 -0

T
(V) (N) (V) (N)
. sz+1 - 775,l,k—1> =k (Xl - 774,l,k)} }

N v - (184)
= Cé,z,)kq + Jf<N>,l,lch(1,z,)k (Jf(N%l,k) r
N T N
_Cl(,l-i)-l,k (Jf“V),l,k) - Jf<N>,l,k (Cl(,l—i)-l,k) )
where

N N N N M1t
Sl 2 B [0 o] [ - i) (185)
Similarly as C;ﬂrl, . (174), the evaluation of Cl(,]lv+)1, . (185) requires the knowledge of the joint pdf of the
random variables Xl(ivl) and xl(ivl) , which cannot inferred from n‘iflk) (xl(N)) and ﬁiék*l) (xl(fl) ), unless
the random variables xl(N) and xl(j_vl) are assumed to be independent. For this reason this joint pdf is

approximated with the function flk (xl(N),xl(ivl)) (45), which involves mik_l) (XZ(L)) (whose flow into

the dashed block generating zl(L) is not visible in the graph), but is not influenced by m’ék_l) (xl(fl))

Let us focus now on the integral

N N L > (k—1 L L
[ (e ) () . (186)
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appearing in the RHS of (45). Substituting (65) and (122) in this integral and exploiting the results
illustrated at point 3. yields

(N). g(N) (N) (N) (L) ~(N) ()., (L) (L) (L)
fN(Xl+1vfz (Xl )+Az x;, Cu )'N(Xl ’774,l,k—1’c4,l,k—1) dx,

N 187)
N). - N N (
3 (e (<) &)
where

_ N N) (L N) ([ (N

i+ (Xz( )) = A )774(1,1,)1%1 + £ )(Xl( )) (188)
and -

= (N N) (L N

CY =M+ Al (A7) (189)

Since a Gaussian form is desired for 773() (zl(L)) , the Gaussian projection mi’% (XI(N)> (90) of 1" (XZ(N))

(88) is employed in the evaluation of fj (xl(N),xl(ivl)) (45). Then, substituting (90) and (187) in (45)

yields

; N) (M) ~ N). (N N N). ~ N\ AV
for (Xl( )7Xl(+1)) :N(xz( );nz(l,l,)kﬁcz(l,l,)k) N(Xl(+1)§n(k) (xz( )> 7C.§c )>7 (190)
Finally, based on the last expression, (188) and the mathematical results illustrated at point 4., it is
(V)

easy to show that C;;/, , (174) can be approximated as

N ~ N
Clilin = I po0 1k Ci (191)
Finally, substituting the last result in (184) yields (116); note that this expression is independent of

ﬁzflkfl) (xl(L)), which, consequently, is not required in the evaluation of 77(¥) (zl(L)) (114) (as shown

in Fig. 7).
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