IMAL NEAR-END AND FAR-END MULTI-MICROPHONE SPEECH INTELLIGIBILITY ENHANCEMENT BASED ON MUTUAL INFORMATION

1. SYSTEM MODEL

Speech vector in time domain (s) is transformed into frequency-time matrix (S) using short discrete Fourier transform (SDFT), where the acoustic signal at frequency-time point (k, i) is $S_{k,i}$, k = 1, ..., K and i = 1, ..., N.

- $d_{k,j}$ denotes the acoustic transfer function from source to microphone j and we write $\mathbf{d}_k = \mathbf{d}_{k,j}$ $[d_{k,1},...,d_{k,M}]^T$.
- Far-end noise recorded by microphones: $\mathbf{u}_k = [u_{k,1}, ..., u_{k,n}]$

ASSUMPTIONS

- 1. Signal model follows the Markov chain model: $S \rightarrow T \rightarrow$
- 2. The enhancement is performed by a linear time-invariant operator.
- 3. All processes are jointly Gaussian, stationary, and memoryless so we omit the time-frame index ifor notational convenience so $\rho_{S_{k,i}Z_{k,i}} = \rho_{S_kZ_k}$.
- 4. Individual component signals of the vectors \mathbf{S}_k and \mathbf{Z}_k are independent so we can then write

$$I(\mathbf{S}_{i}; \mathbf{Z}_{i}) = I(\mathbf{S}; \mathbf{Z}) = \sum_{k} I(S_{k}; Z_{k}) = -\frac{1}{2} \log(1 - \rho_{0_{k}}^{2} \rho_{T_{k}\tilde{X}_{k}}^{2} \rho_{\tilde{X}_{k}Y_{k}}^{2}); \quad \rho_{0_{k}}^{2} = \rho_{S_{k}T_{k}} \rho_{Y_{k}Z_{k}}.$$

$$2. \text{ PROBLEM STATEMENT}$$

$$\sup \quad I(\mathbf{S}; \mathbf{Z}) = -\frac{1}{2} \sum_{k} \log\left(1 - \frac{\rho_{0_{k}}^{2} \mathbf{v}_{k}^{H} \mathbf{d}_{k} \mathbf{d}_{k}^{H} \mathbf{v}_{k} \sigma_{T_{k}}^{2}}{\mathbf{v}_{k}^{H} \mathbf{d}_{k} \mathbf{d}_{k}^{H} \mathbf{v}_{k} \sigma_{T_{k}}^{2} + \mathbf{v}_{k}^{H}} \frac{\mathbf{R}_{U_{k}} \mathbf{v}_{k} + \sigma_{N_{k}}^{2}}{\mathbf{v}_{k} + \sigma_{N_{k}}^{2}})$$

$$1 : \{\mathbf{v}_k\} \in \mathbb{C}^M$$

subject to $\sum_k \mathbf{v}_k^H \mathbf{d}_k \mathbf{d}_k^H \mathbf{v}_k \sigma_{T_k}^2 = \sum_k \sigma_T^2$
$$\alpha_k \in \mathbb{R}_+ = \mathbf{v}_k^H \mathbf{d}_k \mathbf{d}_k^H,$$
$$\mathbf{v}_k = \sqrt{\alpha_k} \mathbf{w}_k$$

$$\begin{split} \sup & I(\mathbf{S}; \mathbf{Z}) = -\frac{1}{2} \sum_{k} \log \\ \mathcal{P}_2 : \mathbf{w}_k \in \mathbb{C}^M, \alpha_k \in \mathbb{R}_+ \\ \text{subject to} & \mathcal{C}_1 : \sum_{k} \alpha_k \sigma_{T_k}^2 = \sum_{k} \alpha_k \sigma_{\mathcal{C}_k}^2 = \sum_{k} \alpha_k \sigma_{\mathcal{$$

Seyran Khademi, Richard C. Hendriks and W. Bastiaan Kleijn

$$,M]^T$$
.

$$\to X \to \tilde{X} \to Y \to Z.$$

$\frac{\rho_{0_k}^2 \mathbf{v}_k^H \mathbf{d}_k \mathbf{d}_k^H \mathbf{v}_k \sigma_{T_k}^2}{\mathbf{d}_k \mathbf{d}_k^H \mathbf{v}_k \sigma_{T_k}^2 + \mathbf{v}_k^H \underbrace{\mathbf{R}_{U_k}}_{\mathbb{E}\{\mathbf{u}_k \mathbf{u}_k^H\}} \mathbf{v}_k + \sigma_{N_k}^2} \right)$	
⁷ k	_
$\left(1 - \frac{\rho_{0,k}^2 \alpha_k \sigma_{T_k}^2}{\alpha_k \sigma_{T_k}^2 + \alpha_k \mathbf{w}_k^H \mathbf{R}_{U_k} \mathbf{w}_k + \sigma_{N_k}^2}\right)$	
$\sigma_{T_k}^2$	

$\sup_{x,y} f(x,y) = \sup_x \sup_y f(x,y) = \sup_x \sup_y f(x,y) = \sup_y f(x,y) = \sup_y \sup_y f(x,y) = \max_y f(x,y) = \max$,
$egin{array}{cc} {f sup} & {f sup} \ lpha_k \in {\mathbb R}_+, {\mathcal C}_1 \ {f w}_k \in {\mathbb C}^M, {f w}_k^H {f d}_k \end{array}$	
$\mathcal{P}_3: \qquad \mathbf{w}_k^* = \frac{\mathbf{R}_{U_k}^{-1} \mathbf{d}_k}{\mathbf{d}_k^H \mathbf{R}_{U_k}^{-1} \mathbf{d}_k}$	-
$\sup_{\mathcal{P}_4} \cdot \sum_{k \in \mathcal{P}_4} \log(1 - \frac{1}{\alpha_k \sigma_2^2})$	$\frac{1}{k}$
subject to $\sum_k \alpha_k \sigma_{T_k}^2 = \sum_k \sigma_T^2$	\overline{k}
4. EX	
• Dual microphone ($m = 2$) with 2 cm spacing, in a $3 \times 4 \times 4$	
 (Room transfer function generated using Habets room impgenerator). Three correlated noise sources and one simulated uncorrelated noise at 60 dB and one target source. 36 seconds of speech sampled at 16 kHz (SDFT with Handblock size of a 32 ms and 50 % overlap (k=256)). 	: 3 uls te າ v
 (Room transfer function generated using Habets room impgenerator). Three correlated noise sources and one simulated uncorrelation noise at 60 dB and one target source. 36 seconds of speech sampled at 16 kHz (SDFT with Han block size of a 32 ms and 50 % overlap (k=256)). 	: 3 ul: te

- optimal.
- the far-end.
- realistic and complete.

[1] C. H. Taal, J. Jensen, and A. Leijon, On optimal linear filtering of speech for near-end listening enhancement, IEEE Signal Process. Lett., vol. 20, no. 3, 2013.

[2] W. B. Kleijn and R. C. Hendriks, A simple model of speech communication and its application to intelligibility enhancement, IEEE Signal Process. Lett., 2014.

3. SOLUTION

Fig.3. Contour representation of the I(S, Z) for two frequency bands together with the average power constraint line

EXPERIMENTAL RESULTS

ith 2 cm spacing, in a $3 \times 4 \times 3$ m room erated using Habets room impulse response

es and one simulated uncorrelated microphone et source. ed at 16 kHz (SDFT with Hann window and % overlap (k=256)).

-11.1 dB SNR at the far-end reference -10 dB SNR at the near-end.

Fig.5. Predicted intelligibility in terms of MI, ASII and SII for different SNRs.

REMARKS

1. Mutual information is a general measure and a flexible model for speech enhancement. 2. Conventional independent processing of the noise at the near-end and the far-end is not

3. Processing of speech for intelligibility enhancement can be decomposed into far-end (MVDR) and near-end (post-filter) processing.

4. Near-end processing must be aware of the noise remaining from the processing performed at

5. Considering the production and interpretation noise makes the intelligibility model more

Delft University of Technology

