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1. SYSTEM MODEL
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Fig.1. Speech communication system with a pre-processor for speech

enhancement [1].

1.Produced : Tk,i = Sk,i
︸︷︷︸
clean speech

+ Qk,i
︸︷︷︸

production noise

2.Processed : X̃k,i = vH
k dkTk + vk

H Uk,i
︸︷︷︸
far-end noise

3.Received : Yk,i = X̃k,i
︸︷︷︸
processed

+ Nk,i
︸︷︷︸
near-end noise

4. Interpreted : Zk,i = Yk,i + Wk,i
︸︷︷︸

interpratation noise
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Fig.2. Proposed multi-mic. system model including the room transfer function, production and interpretation noise.

Speech vector in time domain (s) is transformed into frequency-time matrix (S) using short dis-
crete Fourier transform (SDFT), where the acoustic signal at frequency-time point (k, i) is Sk,i,
k = 1, . . . , K and i = 1, . . . , N .

•dk,j denotes the acoustic transfer function from source to microphone j and we write dk =
[dk,1, ..., dk,M ]T .

•Far-end noise recorded by microphones: uk = [uk,1, ..., uk,M ]T .

ASSUMPTIONS

1. Signal model follows the Markov chain model: S → T → X → X̃ → Y → Z.

2.The enhancement is performed by a linear time-invariant operator.

3.All processes are jointly Gaussian, stationary, and memoryless so we omit the time-frame index i
for notational convenience so ρSk,iZk,i

= ρSkZk
.

4. Individual component signals of the vectors Sk and Zk are independent so we can then write

I(Si;Zi) = I(S;Z) =
∑

k

I(Sk;Zk) = −1

2
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2
TkX̃k

ρ2
X̃kYk
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ρYkZk

.

2. PROBLEM STATEMENT
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3. SOLUTION

supx,y f (x, y) = supxsupyf (x, y)
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Fig.3. Contour representation of the I(S,Z) for two frequency bands
together with the average power constraint line.

4. EXPERIMENTAL RESULTS

• Dual microphone (m = 2) with 2 cm spacing, in a 3× 4× 3 m room
(Room transfer function generated using Habets room impulse response
generator).

• Three correlated noise sources and one simulated uncorrelated microphone
noise at 60 dB and one target source.

• 36 seconds of speech sampled at 16 kHz (SDFT with Hann window and
block size of a 32 ms and 50 % overlap (k=256)).
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Fig.4. Average spectra for −11.1 dB SNR at the far-end reference
microphone and −10 dB SNR at the near-end.
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Fig.5. Predicted intelligibility in terms of MI, ASII and SII for different SNRs.

REMARKS

1.Mutual information is a general measure and a flexible model for speech enhancement.

2. Conventional independent processing of the noise at the near-end and the far-end is not
optimal.

3. Processing of speech for intelligibility enhancement can be decomposed into far-end (MVDR)
and near-end (post-filter) processing.

4.Near-end processing must be aware of the noise remaining from the processing performed at
the far-end.

5. Considering the production and interpretation noise makes the intelligibility model more
realistic and complete.

[1] C. H. Taal, J. Jensen, and A. Leijon, On optimal linear filtering of speech for near-end listening enhancement,
IEEE Signal Process. Lett., vol. 20, no. 3, 2013.

[2] W. B. Kleijn and R. C. Hendriks, A simple model of speech communication and its application to intelligibility
enhancement, IEEE Signal Process. Lett., 2014.


