Multi-Linear Subspace Estimation and Projection for Efficient RFI Excision in SIMO Systems

Tilahun Melkamu Getu^{†‡}, Wessam Ajib[‡] and Omar Yetse[†]

École de technologie supérieure (ETS), Canada Université du Québec à Montréal (UQAM), Canada

- Motivation
- State-of-the-art
- System model
- MLSEP: Multi-Linear Subspace Estimation and Projection
 - ⇒ Problem setup
 - ⇒ Problem formulation
 - RFI subspace estimation
 - Multi-linear (tensor-based) projection
 - ⇒ MLSEP algorithm
- Simulation results
- Conclusions

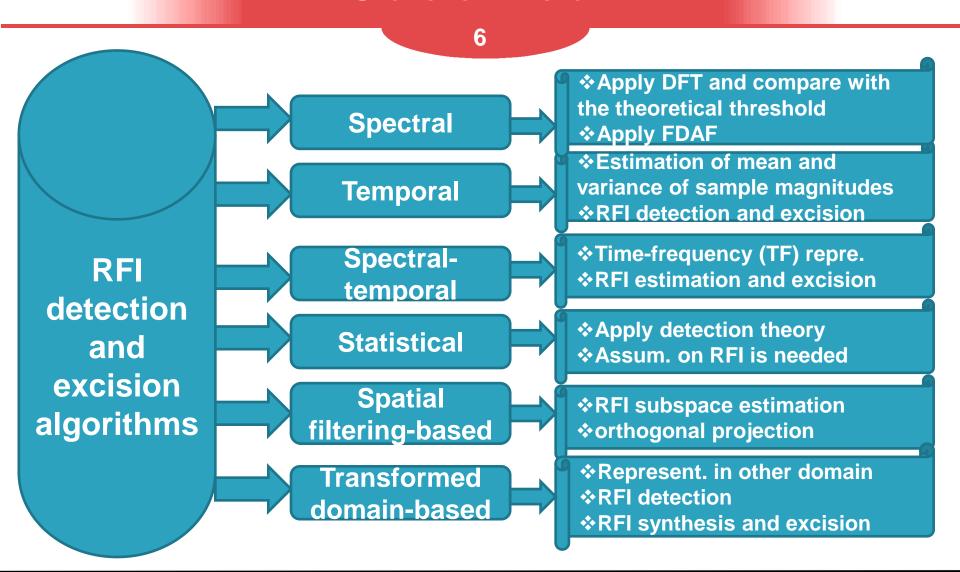
- Motivation
- State-of-the-art
- System model
- MLSEP: Multi-Linear Subspace Estimation and Projection
 - ⇒ Problem setup
 - ⇒ Problem formulation
 - RFI subspace estimation
 - Multi-linear (tensor-based) projection
 - ⇒ MLSEP algorithm
- Simulation results
- Conclusions

Motivation

- Radio frequency interference (RFI) is caused by:
 - ⇒ Out-of-band emissions, jamming, spoofing and meaconing
- Such an RFI is prevalent in
 - ⇒ Radio astronomy, microwave radiometry and and global navigation satellite system (GNSS)
- The congestion of licensed spectrum both in satellite and terrestrial communications and the advent of cognitive radios
 - ⇒ Call for efficient RFI excision (signal processing) algorithms
- On the other hand, tensor-based parameter estimators based on truncated higher-order SVD (HOSVD) have outperformed their matrix-based counterparts
 - ⇒ Nevertheless, tensors had never been deployed for RFI excision

- Motivation
- State-of-the-art
- System model
- MLSEP: Multi-Linear Subspace Estimation and Projection
 - ⇒ Problem setup
 - ⇒ Problem formulation
 - RFI subspace estimation
 - Multi-linear (tensor-based) projection
 - ⇒ MLSEP algorithm
- Simulation results
- Conclusions

State-of-the-art



- Motivation
- State-of-the-art
- System model
- MLSEP: Multi-Linear Subspace Estimation and Projection
 - ⇒ Problem setup
 - ⇒ Problem formulation
 - RFI subspace estimation
 - Multi-linear (tensor-based) projection
 - ⇒ MLSEP algorithm
- Simulation results
- Conclusions

8

- A SIMO system with N_R number of receive antennas suffering from a stationary severe broadband RFI (modeled as a zero mean AWGN with variance of σ_f^2) [1]
- The received signal at time n would be

$$y(n) = \sum_{l=0}^{L} h_l s(n-l) + \sum_{l=0}^{L_f} g_l f(n-l) + z(n),$$
 (2)

- Assumptions:
 - \Rightarrow Uncorrelated s(n), f(n) and z(n)
 - \Rightarrow $\boldsymbol{z}(n)$ is a zero mean AWGN vector with a covariance matrix of $\sigma^2 \boldsymbol{I}_{N_R}$
 - \Rightarrow Perfect estimates of L and L_f

[1] M. Wildemeersch and J. Fortuny-Guasch, "Radio frequency interferenceimpact assessment on global navigation satellite systems," EC Joint Research Centre, Security Technology Assessment Unit, Tech. Rep., Jan.2010.

- Motivation
- State-of-the-art
- System model
- MLSEP: Multi-Linear Subspace Estimation and Projection
 - ⇒ Problem setup
 - ⇒ Problem formulation
 - RFI subspace estimation
 - Multi-linear (tensor-based) projection
 - ⇒ MLSEP algorithm
- Simulation results
- Conclusions

MLSEP: Algorithm proposal

- The proposed MLSEP algorithm comprises two phases
 - ⇒ First phase: No SOI is transmitted in the first long term interval (LTI)
 - The RFI subspace tensor is estimated using HOSVD
 - From the estimated RFI subspace tensor, the multi-linear projector is derived
 - ⇒ Second phase: SOI transmission and RFI excision using the already derived multi-linear projector

Agenda

- Motivation
- State-of-the-art
- System model
- MLSEP: Multi-Linear Subspace Estimation and Projection
 - ⇒ Problem setup
 - ⇒ Problem formulation
 - RFI subspace estimation
 - Multi-linear (tensor-based) projection
 - ⇒ MLSEP algorithm
- Simulation results
- Conclusions

MLSEP: Problem setup

12

Stacking the observation vectors of the N_R receive antennas and W data windows into one highly structured vector of size $N_R.W \times 1$ with respect to the mth STI gives

$$\boldsymbol{y}_{m} = \boldsymbol{H}\boldsymbol{s}_{m} + \boldsymbol{G}\boldsymbol{f}_{m} + \boldsymbol{z}_{m} \in \mathbb{C}^{N_{R}.W}, \tag{3}$$

$$G = \begin{bmatrix} G_1^T, G_2^T, \dots, G_{N_R}^T \end{bmatrix}^T, \qquad (4) \qquad G_j = \begin{bmatrix} g_j^0 & \dots & g_j^{L_f} & 0 & \dots & \dots & 0 \\ 0 & g_j^0 & \dots & g_j^{L_f} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & \dots & 0 & g_i^0 & \dots & g_i^{L_f} \end{bmatrix}. \qquad (5)$$

MLSEP: Problem setup (cont.)

13

 \square The horizontal concatenation of $N y_m$ s in (3) renders

$$Y = HS + GF + Z \in \mathbb{C}^{N_R.W \times N}$$
. (6)

In the first LTI, no SOI transmission occurs and the received signal would then be

$$Y_I = GF + Z \in \mathbb{C}^{N_R.W \times N}$$
. (7)

□ From (7), the RFI subspace $\hat{U}_I \in \mathbb{C}^{N_R.W \times (W+L_f)}$ estimated using SVD as

$$\boldsymbol{Y}_{I} = \left[\hat{\boldsymbol{U}}_{I} \, \hat{\boldsymbol{U}}_{n} \right] \begin{bmatrix} \hat{\boldsymbol{\Sigma}}_{I} & \boldsymbol{0}_{r \times (N-r)} \\ \boldsymbol{0}_{(N_{R},W-r) \times r} & \hat{\boldsymbol{\Sigma}}_{n} \end{bmatrix} \left[\hat{\boldsymbol{V}}_{I} \, \hat{\boldsymbol{V}}_{n} \right]^{H}, \quad (8)$$

where
$$\hat{\Sigma}_I = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_r)$$
 and $r = W + L_f$.

[2] B. Song, F. Roemer, and M. Haardt, "Blind estimation of simo channels using a tensor-based subspace method," in Signals, Systems and Computers (ASILOMAR), 2010 Conf. Record of the 44th Asilomar Conf. on, Nov 2010, pp. 8–12.

Agenda

- Motivation
- State-of-the-art
- System model
- MLSEP: Multi-Linear Subspace Estimation and Projection
 - ⇒ Problem setup
 - ⇒ Problem formulation
 - RFI subspace estimation
 - Multi-linear (tensor-based) projection
 - ⇒ MLSEP algorithm
- Simulation results
- Conclusions

MLSEP: Formulation

15

To deploy the **inherent structure of the measurement data**, we model the received signal by a 3-way tensor $\mathbf{y} \in \mathbb{C}^{N_R \times W \times N}$, where N_R , W & N are the number of antennas, samples per a STI and non-overlapping STIs per LTI, respectively

If $[\mathcal{Y}]_{(3)}^T$ should be equal to Y in (6), the multi-linear equivalent of (6) would be

$$\mathbf{\mathcal{Y}} = \mathbf{\mathcal{H}} \times_3 \mathbf{S}^T + \mathbf{\mathcal{G}} \times_3 \mathbf{F}^T + \mathbf{\mathcal{Z}}, \tag{9}$$

where $\mathcal{H} \in \mathbb{C}^{N_R \times W \times (W+L)}$ and $\mathcal{G} \in \mathbb{C}^{N_R \times W \times (W+L_f)}$ are constructed as in Fig. 1 and $\boldsymbol{\mathcal{Z}}$ is the noise tensor

lacksquare Besides, $[oldsymbol{\mathcal{H}}]_{(3)}^{\mathrm{T}}=oldsymbol{H}$ and $[oldsymbol{\mathcal{G}}]_{(3)}^{\mathrm{T}}=oldsymbol{G}$

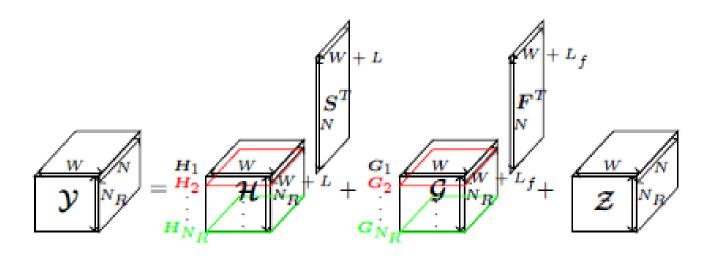


Fig. 1. Multi-linear formulation from the received signal per LTI Y in (6).

Agenda

- Motivation
- State-of-the-art
- System model
- MLSEP: Multi-Linear Subspace Estimation and Projection
 - ⇒ Problem setup
 - ⇒ Problem formulation
 - RFI subspace estimation
 - Multi-linear (tensor-based) projection
 - ⇒ MLSEP algorithm
- Simulation results
- Conclusions

RFI subspace estimation

18

In the first LTI, no SOI is transmitted and hence the truncated HOSVD of the received signal $y_I = \mathcal{G} \times_3 F^T + \mathcal{Z}$ would be

$$\mathbf{\mathcal{Y}}_{I} \approx \hat{\mathbf{\mathcal{S}}}^{[I]} \times_{1} \hat{\mathbf{U}}_{1}^{[I]} \times_{2} \hat{\mathbf{U}}_{2}^{[I]} \times_{3} \hat{\mathbf{U}}_{3}^{[I]}, \tag{10}$$

where $\hat{S}^{[I]} \in \mathbb{C}^{r_1 \times r_2 \times r_3}$ is a core-tensor which satisfies the all-orthogonality conditions, r_n is the n-rank of the noiseless tensor

$$\widetilde{\boldsymbol{\mathcal{Y}}}_{I} = \boldsymbol{\mathcal{G}} \times_{3} \boldsymbol{F}^{T}$$

$$r_1 = \min(N_R, L_f + 1), r_2 = \min(W, N.N_R) \& r_3 = \min(N, W + L_f).$$

RFI signal subspace estimation (cont.)

19

From (10), the estimated RFI signal subspace tensor is defined as [3]

$$\hat{\boldsymbol{\mathcal{U}}}^{[I]} = \hat{\boldsymbol{\mathcal{S}}}^{[I]} \times_1 \hat{\boldsymbol{U}}_1^{[I]} \times_2 \hat{\boldsymbol{U}}_2^{[I]} \times_3 \hat{\boldsymbol{\Sigma}}_I^{-1}. \tag{11}$$

Note that $\left[\hat{\mathcal{U}}^{[I]}\right]_{(3)}^T \in \mathbb{C}^{N_R.W \times r_3}$ span the estimated RFI signal subspace and inspires the underneath theorem

Theorem 1: The tensor-based RFI subspace estimator $\left[\hat{\boldsymbol{\mathcal{U}}}^{[I]}\right]_{(3)}^{T}$ and the matrix-based RFI subspace estimator $\hat{\boldsymbol{U}}_{I}$ are related by

$$\left[\hat{\boldsymbol{\mathcal{U}}}^{[I]}\right]_{(3)}^{T} = \left(\hat{\boldsymbol{T}}_{1} \otimes \hat{\boldsymbol{T}}_{2}\right) \cdot \hat{\boldsymbol{U}}_{I}, \tag{12}$$

where $\hat{\boldsymbol{T}}_r = \hat{\boldsymbol{U}}_r^{[I]}$. $\hat{\boldsymbol{U}}_r^{[I]^H}$, r=1,2.

[3] F. Roemer, M. Haardt, and G. Del Galdo, "Analytical performance assessment of multi-dimensional matrixand tensor-based esprit-type algorithms," IEEE Trans. Signal Process., vol. 62, no. 10, pp. 2611–2625, May 2014.

- Motivation
- State-of-the-art
- System model
- MLSEP: Multi-Linear Subspace Estimation and Projection
 - ⇒ Problem setup
 - ⇒ Problem formulation
 - RFI subspace estimation
 - Multi-linear (tensor-based) projection
 - ⇒ MLSEP algorithm
- Simulation results
- Conclusions

Multi-linear projection

21

The multi-linear projector for perfect excision is stated in the underneath theorem

Theorem 2: For a perfect \mathcal{U}^{Γ_1} , the multi-linear projector $\mathcal{P} \in \mathbb{C}^{N_R \times W \times N_R.W}$ which evokes perfect RFI excision is given by

$$\mathcal{P} = \mathcal{I}_3 - \hat{\boldsymbol{\mathcal{U}}}^{[I]} \times_3 \left(\hat{\boldsymbol{\mathcal{U}}}^{[I]} \right)^{+3}, \tag{13}$$

where $\mathcal{I}_3 \in \mathbb{C}^{N_R \times W \times N_R.W}$ is the 3-mode identity tensor,

$$\left(\hat{\boldsymbol{\mathcal{U}}}^{[I]}\right)^{+3}$$
 is the 3-mode pseudo-inverse tensor, $[\boldsymbol{\mathcal{I}}_3]_{(3)} = \boldsymbol{\mathcal{I}}_{N_R.W}$ and $\left[\left(\hat{\boldsymbol{\mathcal{U}}}^{[I]}\right)^{+3}\right]_{(3)} = \left[\hat{\boldsymbol{\mathcal{U}}}^{[I]}\right]_{(3)}^{+}$.

 However, perfect excision is impossible and we define the root mean square excision error (RMSEE) as

$$RMSEE = \sqrt{\mathbb{E}\{\|\boldsymbol{P}\boldsymbol{G}\|_F^2\}}$$
 (14)

RMSEE =
$$\sqrt{\mathbb{E}\left\{\left\|\left[\boldsymbol{\mathcal{P}}\times_{3}\boldsymbol{\mathcal{G}}\right]_{(3)}^{T}\right\|_{F}^{2}\right\}}$$
. (15)

- Motivation
- State-of-the-art
- System model
- MLSEP: Multi-Linear Subspace Estimation and Projection
 - ⇒ Problem setup
 - ⇒ Problem formulation
 - RFI subspace estimation
 - Multi-linear (tensor-based) projection
 - ⇒ MLSEP algorithm
- Simulation results
- Conclusions

The MLSEP algorithm

23

Algorithm I: MLSEP for efficient RFI excision in SIMO systems

Input:
$$Y_I$$
, Y , N_R , W , L , L_f , N

Assumptions:
$$N \succeq \{W + L, W + L_f\}, W \succ \{L, L_f\},$$

Initialization: $r_1 = \min(N_R, L_f + 1), r_2 = \min(W, N.N_R)$

1:
$$\mathbf{y}_I$$
 =the tensorization of $\left[\mathbf{y}_I\right]_{(3)} = \mathbf{Y}_I^T$

2:
$$[\mathbf{y}_I]_{(1)} = U_1 \mathbf{\Sigma}_1 V_1^H; \hat{U}_1^{[I]} = U_1(:, 1:r_1)$$

3:
$$[\mathbf{\mathcal{Y}}_I]_{(2)} = U_2 \mathbf{\Sigma}_2 V_2^H; \, \hat{U}_2^{[I]} = U_2(:, 1:r_2)$$

4:
$$Y_I = U\Sigma V^H$$
; $\hat{U}_I = U(:, 1:W + L_f)$

5:
$$\left[\hat{\mathcal{U}}^{[I]}\right]_{(3)}^{T} = \left(\hat{T}_{1} \otimes \hat{T}_{2}\right) \cdot \hat{U}_{I}; \hat{T}_{r} = \hat{U}_{r}^{[I]} \cdot \hat{U}_{r}^{[I]H}, r = 1, 2$$

6:
$$\hat{\mathcal{U}}^{[I]} = \text{the tensorization of } \left[\hat{\mathcal{U}}^{[I]}\right]_{(3)}$$

7:
$$\mathcal{P} = \mathcal{I}_3 - \hat{\mathcal{U}}^{[I]} \times_3 \left(\hat{\mathcal{U}}^{[I]}\right)^{+3} \in \mathbb{C}^{N_R \times W \times N_R.W}$$

8: Repeat

9:
$$\mathbf{y}$$
 =the tensorization of $[\mathbf{y}]_{(3)} = \mathbf{Y}^T$

10: return
$$\left[\boldsymbol{\mathcal{P}} \times_3 \boldsymbol{\mathcal{Y}} \right]_{(3)}^T$$

11: Until no SOI transmission

Multi-linear RFI subspace estimation

Multi-linear projection

Multi-linear RFI excision

- Motivation
- State-of-the-art
- System model
- MLSEP: Multi-Linear Subspace Estimation and Projection
 - ⇒ Problem setup
 - ⇒ Problem formulation
 - RFI subspace estimation
 - Multi-linear (tensor-based) projection
 - ⇒ MLSEP algorithm
- Simulation results
- Conclusions

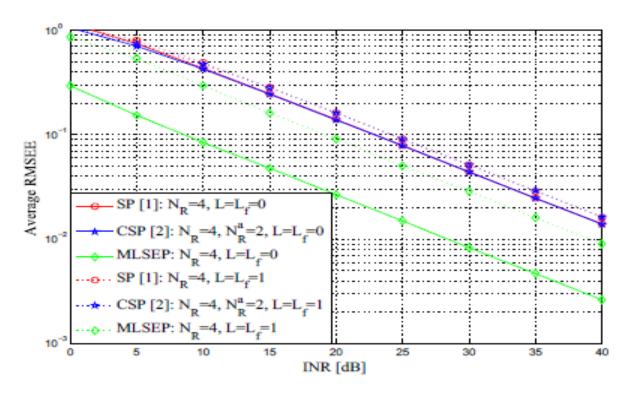


Fig. 2. Average RMSEE for an RFI excision using SP, CSP and MLSEP during $N_{\rm SOI}=200$ LTIs and 40 observed symbols per LTI at W=4, N=10, $\alpha=100$ and a pre-excision SINR of 0 dB.

Simulation results (cont.)

26

	Single-path $(L+1=L_f+1=1)$ scenario					Multi-path $(L+1=L_f+1=2)$ scenario				
Algorithms	INR [dB]					INR [dB]				
	0	10	20	30	40	0	10	20	30	40
Perfect excision	2.80 dB	10.21 dB	19.84 dB	29.80 dB	39.80 dB	2.92 dB	10.35 dB	19.95 dB	29.91 dB	39.92 dB
SP [1]	1.35 dB	8.11 dB	17.67 dB	27.62 dB	37.61 dB	1.31 dB	7.62 dB	17.02 dB	26.96 dB	36.96 dB
CSP [2]	1.55 dB	8.18 dB	17.66 dB	27.63 dB	37. 65 dB	1.48 dB	7.76 dB	17.09 dB	27.01 dB	36.99 dB
MLSEP	2.67 dB	10.11 dB	19.74 dB	29.69 dB	39.69 dB	1.87 dB	9.12 dB	18.80 dB	28.76 dB	38.76

TABLE I

AVERAGE SINR GAIN [DB] EVOKED BY PERFECT EXCISION, SP [1], CSP [2] AND MLSEP FOR BOTH SINGLE-PATH AND MULTI-PATH SCENARIOS DURING $N_{\rm SOI}=200$ LTIs and 40 observed symbols per LTI at W=4, N=10, $\alpha=100$ and a pre-excision SINR of 0 dB.

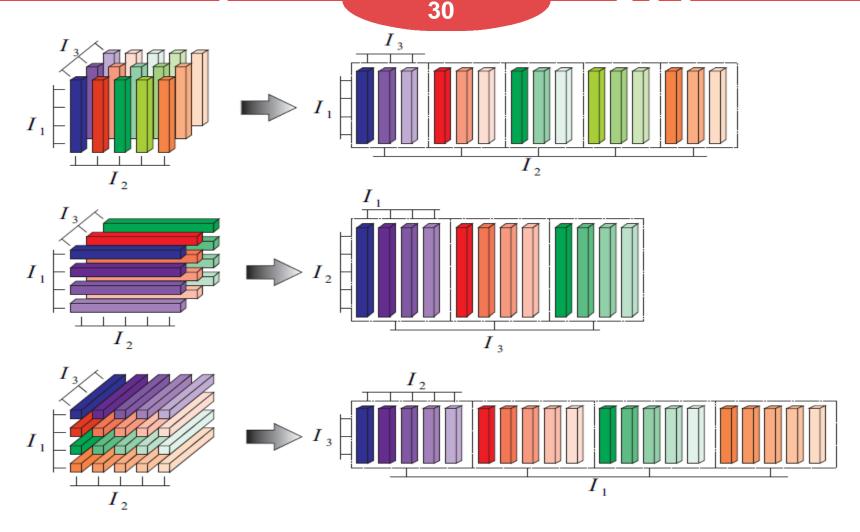
- Motivation
- State-of-the-art
- System model
- MLSEP: Multi-Linear Subspace Estimation and Projection
 - ⇒ Problem setup
 - ⇒ Problem formulation
 - RFI subspace estimation
 - Multi-linear (tensor-based) projection
 - ⇒ MLSEP algorithm
- Simulation results
- Conclusions

Conclusions and outlooks

- The paper introduces the multi-linear algebra framework to the RFI excision research
- The MLSEP algorithm outperforms the state-of-the-art projectionbased RFI excision algorithms algorithms

Backups

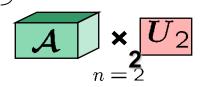
Unfoldings of a 4x5x3 tensor in reverse cyclical column ordering [6]



[3] F. Roemer, "Advanced algebraic concepts for efficient multi-channel signal processing," Ph.D. dissertation, Ilmenau Univ. of Tech., 2012.

n-mode products between $\mathcal{X} \in \mathbb{C}^{M_1 \times M_2 \times M_3}$ and $U_n \in \mathbb{C}^{P_n \times M_n}$

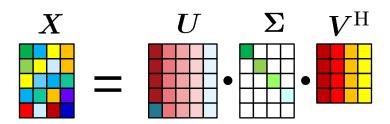
$$egin{aligned} oldsymbol{\mathcal{Y}} &= oldsymbol{\mathcal{X}} imes_1 oldsymbol{U}_1 \in \mathbb{C}^{P_1 imes M_2 imes M_3} \ oldsymbol{\mathcal{Y}} &= oldsymbol{\mathcal{X}} imes_2 oldsymbol{U}_2 \in \mathbb{C}^{M_1 imes P_2 imes M_3} \ oldsymbol{\mathcal{Y}} &= oldsymbol{\mathcal{X}} imes_3 oldsymbol{U}_3 \in \mathbb{C}^{M_1 imes M_2 imes P_3} \end{aligned}$$



 $\begin{array}{l} \boldsymbol{\mathcal{Y}} = \boldsymbol{\mathcal{X}} \times_1 \boldsymbol{U}_1 \in \mathbb{C}^{1 \times M_2 \times M_3} \\ \boldsymbol{\mathcal{Y}} = \boldsymbol{\mathcal{X}} \times_2 \boldsymbol{U}_2 \in \mathbb{C}^{M_1 \times P_2 \times M_3} \\ \boldsymbol{\mathcal{Y}} = \boldsymbol{\mathcal{X}} \times_3 \boldsymbol{U}_3 \in \mathbb{C}^{M_1 \times M_2 \times P_3} \end{array} \right\} \Leftrightarrow [\boldsymbol{\mathcal{Y}}]_{(n)} = \boldsymbol{U}_n \cdot [\boldsymbol{\mathcal{X}}]_{(n)} \qquad \begin{array}{l} \text{i.e., all the n-mode vectors} \\ \text{multiplied from the left-hand-side} \\ \text{by } \boldsymbol{U}_n \end{array}$

Properties of the HOSVD [4]

Matrices

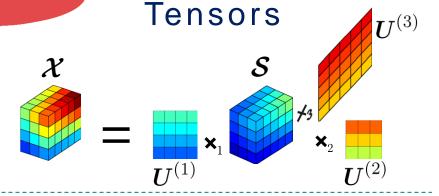


U, V – unitary

 Σ – diagonal

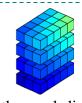
 Σ – "all orthogonal"

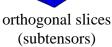
[4] F. Roemer, "Advanced algebraic concepts for efficient multi-channel signal processing," Ph.D. dissertation, Ilmenau Univ. of Tech., 2012.



 $U^{(1)}$, $U^{(2)}$, $U^{(3)}$ – unitary

S – full tensor





orthogonal slices (subtensors)

"all orthogonality" of ${\cal S}$

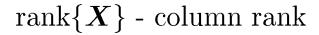
 $[\mathcal{S}]_{(n)}$ – have orthogonal rows

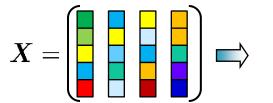
$$oldsymbol{\mathcal{S}}_{(n)}\cdot[oldsymbol{\mathcal{S}}]_{(n)}^{ ext{H}}=oldsymbol{\Sigma}^{(n)^2}.$$

The "n-rank" of a tensor [4]

Matrices

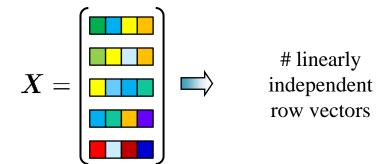
33 Tensors

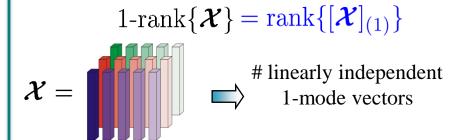




linearly independent column vectors

$\operatorname{rank}\{\boldsymbol{X}^{\mathrm{T}}\}$ - row rank





$$2-\operatorname{rank}\{\boldsymbol{\mathcal{X}}\}=\operatorname{rank}\{[\boldsymbol{\mathcal{X}}]_{(2)}\}$$

$$\mathcal{X} = \Longrightarrow$$
linearly independent 2-mode vectors

[4] F. Roemer, "Advanced algebraic concepts for efficient multi-channel signal processing," Ph.D. dissertation, Ilmenau Univ. of Tech., 2012.

The "n-rank" of a tensor [4]

Matrices

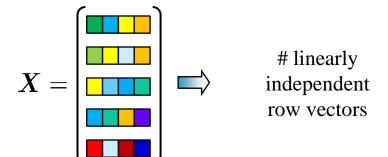
Tensors

 $rank\{X\}$ - column rank

$$X = \left[\begin{array}{c|c} & & & \\ & & & \end{array} \right] \Longrightarrow$$

linearly independent column vectors

 $\operatorname{rank}\{\boldsymbol{X}^{\mathrm{T}}\}$ - row rank



$$\operatorname{rank}\{\boldsymbol{X}\} = \operatorname{rank}\{\boldsymbol{X}^{\mathrm{T}}\}$$

$$\operatorname{rank}\{\boldsymbol{X}\} \leq \min\{M_1, M_2\}$$

$$3\operatorname{-rank}\{\mathcal{X}\}=\operatorname{rank}\{[\mathcal{X}]_{(3)}\}$$

$$1$$
-rank $\{\mathcal{X}\} \neq 2$ -rank $\{\mathcal{X}\} \neq 3$ -rank $\{\mathcal{X}\}$ n -rank $\{\mathcal{X}\} \leq M_n$

