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INTRODUCTION 1

• Fast exemplar selection (FES) is a scalable, deterministic and computationally efficient algorithm for
adaptive column sampling.

• FES extracts an incoherent subset that approximates the column span of a matrix X ∈ Rn×l

• FES achieves this sequentially by ensuring that the sampled exemplars have a positive definite (PD)
Gram matrix.

• To handle larger datasets, FES uses incremental Cholesky decomposition and block matrix inversion
algorithms.
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Exact Matrix Recovery
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(a) (b) (c)
Approximation error vs number of dictionary atoms for (a) Yale Face, (b) and (c) UoS datasets.

Sparse Representation Based Clustering
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Normalized cut ratios for clustering task on the Yale face dataset.

Other applications: Low rank approximation, optimal feature selection, outlier detection, dictionary learning,
subspace clustering etc.

PROPOSED APPROACH 2

Problem: Aim is to sample a small number of columns of a matrix X such that

‖X −ΠX‖F = ‖X − Xk‖F

i.e., error between the target matrix X and its rank-k approximation Xk

Proposed Approach: A column xi from matrix X can be sampled based on its distance to the space spanned
by the sampled set XS as

i = argmax
i*S

‖xi −ΠS xi‖
2
2 = ‖xi − XS X+

S xi‖
2
2

Assuming columns sampled in XS are independent, the above expression can be expanded as

∆i = di − aT
i (W)−1ai

where di = xT
i xi, ai = XT

S xi and W = XT
S XS . The updated Gram matrix after each selection can be computed as

(assuming normalized data)

Wk+1 =

[
XT

S XS a
aT xT

i xi

]
=

[
Wk a
aT 1

]
W will be invertible if it has a unique Cholesky decomposition Wk = LkLT

k , and the updated Gram matrix can
be expressed as [

Wk a
aT 1

]
=

[
Lk 0
cT d

] [
LT

k cT

0 d

]
=

[
LkLT

k Lkc
LT

k cT cT c + d2

]
which gives us

a = Lkc or c = L−1
k a and d =

√
1 − cT c

Hence, FES proposes to iteratively sample columns using the criteria cT c < 1. This computation can be speed
up via approximating L−1

k+1 by performing rank-1 updates to the inverse matrix L−1
k i.e.,[

Lk 0
cT d

]−1

=

[
L−1

k 0
−(1/d)cT L−1

k 1/d

]

Abbreviations: x - Signal Vector| X - Signal Matrix | XS - Sampled Matrix | Π - Projection Matrix | W - Gram Matrix |
L - Cholesky Factor | S - indexes of sampled column
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