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Subspace Estimation

New Challenges

I Tracking and estimation accuracy.

I Distributed system: separate antennas.

I Large scale: massive array.

I Complexity: distribute computations to local processors.

Figure: Two examples: WiFi networks and Radar networks.
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Literature Survey

I The power method [Gv96]:
I A batch processing method with fast convergence.
I Non-adaptive, high latency
I Guarantee for a rank-p subspace.
I Computations can be decentralized [LSM11].

I The Oja’s method [OK85]
I A stochastic gradient decent (SGD) method adaptive for tracking varying statistics.
I First order method: suffer from slow convergence.
I unconstrained SGD, no guarantee for a rank-p subspace.
I Computations can be decentralized [SPK08, SPZ16].

I The key of the decentralization is average consensus

[LSM11, SPK08, SPZ16, BDF13]

I Data are often measured distributively over large networks.
I Gossip-based consensus algorithms solve multi-agent coordination and optimization

problems in a decentralized manner.
I Their key features are

3 built-in fault tolerance to intermittent computation/communication.

3 self reorganization to automatic failure correction.
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Problem Statement

I We consider a non-stationary stochastic process r(t) ∈ CN and let T ⊂ {1, 2, ...}
be a sampling set. Define the sampled covariance:

R̂(T ) := |T |−1∑
s∈T r(s)rH(s) . (1)

I We track top p-D subspace by tackling the non-convex, stochastic optimization:

min
U∈CN×p

ft(U) := E
[
‖r(t)− UU

H
r(t)‖2

]
, ∀ t ≥ 1 . (2)

I We follow the stochastic approximation to the objective function f (U):

f̂ (U ; Tτ ) := Tr
((

UU
H
UU

H − 2UUH
)
R̂(Tτ )

)
, (3)

where Tτ ⊂ {1, 2, ...} is the set of observations made during the τ th batch.

I If r(t) is stationary for all t ∈ Tτ , then E[f̂ (U; Tτ )] = ft(U).
I When |Tτ | is large, f̂ (U; Tτ ) is a good approximation for ft(U).
I No unitary constraint on the subspace U, no guarantee for a rank-p subspace.
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Review the Power Method (PM)

The PM works with a whole batch of samples in Tτ .

I Step 1: Generate a random vector as an initial point ũk(1, τ)

I Step 2: For k = 1, ..., p

ũ
k(`+ 1, τ) = R̂(Tτ ) ũk(`, τ)−

k−1∑
j=1

(û j(τ))H
(
R̂(Tτ ) ũk(`, τ)

)
û
j(τ), ∀` = 1, ..., L

û
k(τ) := ũ

k(L, τ)/‖ũk(L, τ)‖ .

I Step 3: Output the top-p subspace: ÛPM(τ) := [û1(τ) û2(τ) . . . ûp(τ)].

We use Û0 to initialize the subspace and denote the above power process by

UPM(τ) = PM
(
{r(s)}s∈Tτ ; Û0; L

)
, (4)
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Review the Oja’s Learning Rule

The Oja’s learning rule works with one sample of r(t) at a time.

I Let ÛOja(t) ∈ CN×p be an estimate of U(t) at iteration t, we perform the updates:

ÛOja(t + 1) = ÛOja(t)− γt∇f̂ (ÛOja(t); {t}) , (5)

with ∇f̂ (Û(t), {t}) = −2r(t)rH (t)Û(t) + r(t)rH (t)Û(t)ÛH (t)Û(t) + Û(t)ÛH (t)r(t)rH (t)Û(t) .

I Convergence for stationary r(t):
I When p = 1 and γt = c/t, at a sub-linear rate of O(1/t) [BDF13];
I If

∑
t γt =∞,

∑
t γ

2
t <∞, converges almost surely to the principal p-dimensional

subspace, yet the convergence rate is not given.

I In practice, the Oja’s learning rule is often used for non-stationary r(t) with γt .
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Motivations for the Power-Oja (P-Oja) Method

Observations for PM and Oja:

I For PM, when r(t) is non-stationary and |Tτ | � ∞ → a poor approximation for

R̂(Tτ ) to the true covariance → degraded performance.

I For Oja, the spectral gap,

σp(R̂(T ))− σp+1(R̂(T ))

is an important factor in determining the convergence speed [BDF13].

Our motivations:

I We want both advantages of the two methods:tracking and estimation accuracy.

I Try to increase the spectral gap.
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How to Increase the Spectral Gap

Our approach:

I Modify the stochastic approximation of the objective function:

f̂POja(U ; T ) = Tr
((

UU
H
UU

H − 2UUH
)

(R̂(T ))L
)
. (6)

Apparently, (R̂(T ))L has a better spectral gap than R̂(T ), i.e.,

σp((R̂(T ))L)− σp+1((R̂(T ))L) > σp(R̂(T ))− σp+1(R̂(T )).

I P-Oja tracks the subspace in a batch by batch manner:
I For the τ th batch, we have

∇f̂POja(ÛPOja(τ); Tτ ) = −2(R̂(Tτ ))LÛPOja(τ) + (R̂(Tτ ))LÛPOja(τ)ÛH
POja(τ)ÛPOja(τ)

+ ÛPOja(τ)ÛH
POja(τ)(R̂(Tτ ))LÛPOja(τ) .

I (R̂(Tτ ))LÛPOja(τ): performing L rounds of the power iterations on ÛPOja(τ) and we

can approximately calculate it by ÛPM(τ) ≈ PM
(
{r(s)}s∈Tτ ; ÛPOja(τ); L

)
.
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The Power-Oja (P-Oja) Method

Finally, the P-Oja method is given by the following iterations:

ÛPOja(τ + 1) = ÛPOja(τ)− γτ ∇̂f̂POja(ÛPOja(τ); Tτ ) , (7)

where ∇̂f̂POja is the approximated gradient, evaluated as:

∇̂f̂POja(ÛPOja(τ); Tτ ) = UPM(τ)ÛH
POja(τ)ÛPOja(τ)

+ ÛPOja(τ)ÛH
POja(τ)UPM(τ)− 2UPM(τ) .

where ÛPM(τ) ≈ PM
(
{r(s)}s∈Tτ ; ÛPOja(τ); L

)
.
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Some Remarks for Power-Oja

I The P-Oja method is parametrized by L and T
I T : controls the variance in the sampled covariance R̂(Tτ );

I L: the acceleration given by the power method subroutine.

I P-Oja reduces into the Oja’s learning rule when p = 1, T = 1, L = 1.

I If the samples in the batch is sufficient, we are very likely to obtain a rank-p

subspace. Recall that no guarantee for a rank-p subspace for Oja.
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Decentralization
Preliminaries:

I We denote the communication network between M processor units as an

undirected graph G = (V ,E) such that V = {1, ...,M} and E ⊆ V × V .

I The graph is assumed to be sparse and connected.

I A doubly stochastic matrix W associated with G , s.t. [W ]ij = 0 iff (i , j) /∈ E .

I Each processor unit locally processes its subarray’s sampling data, and meanwhile

exchanges information with its neighbors in G .

Figure: Two examples: WiFi networks and Radar networks.
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Average Consesus

I Stored and computed in processor unit i :

I ri (t) ∈ C
N
M = [r1(t); ...; rM(t)]

I ûi (`, τ) ∈ C
N
M = [û1(`, τ); ...; ûM(`, τ)

I z0
i := rHi (t)ûi (`, τ) and z0

i

I The power iteration can be expressed as:∑
s∈Tτ

r(s)rH(s)û(`, τ)︸ ︷︷ ︸
centralized:∑M

i=1 z
0
i

=
∑
s∈Tτ

r(s)ACi ({z0
j }Mj=1;K)︸ ︷︷ ︸

decentralized:

zk+1
i

=
∑M

j=1
Wij z

k
j

with ‖zK −
(∑M

i=1 z
0
i /M

)
1‖ ≤ |λ2 (W ) |K‖z0 −

(∑M
i=1 z

0
i /M

)
1‖ ,

I The convergence rate depends on λ2 (W ) [DKM+10].
I limK→∞

∑M
j=1 z

0
j = M · ACi ({z0

j }
M
j=1;K) at a geometric rate in K [DKM+10].
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An Illustration of Decentralized Power-Oja

Key technique in Oja: AH
B =

∑M
i=1 Vi =

∑M
i=1 (Ai )HB i︸ ︷︷ ︸

p×p

.
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Some Remarks for Decentralized Power-Oja

I The message exchanged in the approximate gradient is a p × p matrix.

I It is crucial for us to choose a proper network topology.

‖zK − z̄1‖ ≤ |λ2 (W ) |K‖z0 − z̄1‖.

I It is more economical to connect the nearby units with a higher probability while

the far-apart units with a lower probability.

I Example: small-world graph with optimal constant weights [XB04]:

W = I − 2

λ1(L) + λN−1(L)
L ,

where L is the Laplacian matrix.
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Numerical Simulations: parameter settings

I A massive array with N = 256 antennas grouped to M = 64 subarrays, each

equipped with four antennas.

I T = 1500, SNR= 20dB, the power iteration is L = 20.

I Degree-6 small-world graph with rewiring probability 0.2.

I γt = 5× 10−4 for the Oja’s learning rule, γt = 0.01t with P-Oja for stationary

signals and γt = 0.04t for non-stationary signals.

Figure: Grouping antennas into subarrays with distributed processors for spectrum sensing.
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Numerical Simulations: for stationary signals
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Figure: The normalized objective value for a constant 2-D signal space.

I The convergence rate increases as T increases.

I The decentralized performance will approach the centralized one as K increases.

I The P-Oja method converges much faster than the Oja’s method, and the

decentralized algorithms work well under the chosen graph.
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Numerical Simulations: for non-stationary signals
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Figure: The normalized objective value for a variant 1-D signal space. The legend is the same

as that in Fig. 1, except for the number of gossip iterations is now K = 10. The

diamond-marked curve is the NOV for the conventional power method.

I As T increases, the convergence rate increases.

I The decentralized and centralized methods coincide with each other when K = 10.

I The power method cannot track the change of the covariance.
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Conclusions

I We propose P-Oja method to integrate the Oja’s learning rule and power method.

I It exhibits both tracking ability and estimation accuracy.

I All the computations are distributed into individual processor units.

I Our simulation results demonstrate that the proposed P-Oja can both track the

change of statistic, but converges much faster than the conventional Oja method.
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Thank You

&&

Question Welcomed!
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