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Subspace Estimation

New Challenges

» Tracking and estimation accuracy.
» Distributed system: separate antennas.
> Large scale: massive array.

» Complexity: distribute computations to local processors.

| g

[ Processor unit |——{ Processor unit |—— processor unit |

Cloud processors

Figure: Two examples: WiFi networks and Radar networks.
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Literature Survey

» The power method [Gv96]:
> A batch processing method with fast convergence.
> Non-adaptive, high latency
> Guarantee for a rank-p subspace.
» Computations can be decentralized [LSM11].
» The Oja’s method [OK85]
> A stochastic gradient decent (SGD) method adaptive for tracking varying statistics.
> First order method: suffer from slow convergence.
> unconstrained SGD, no guarantee for a rank-p subspace.
» Computations can be decentralized [SPK08, SPZ16].

» The key of the decentralization is average consensus
[LSM11, SPKO08, SPZ16, BDF13]

> Data are often measured distributively over large networks.
> Gossip-based consensus algorithms solve multi-agent coordination and optimization

problems in a decentralized manner.
> Their key features are
v built-in fault tolerance to intermittent computation/communication.
v self reorganization to automatic failure correction.
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Problem Statement

» We consider a non-stationary stochastic process r(t) € C" and let 7 C {1,2,...}

be a sampling set. Define the sampled covariance:

R(T) =TI S oer r(s)rf(s) - (1)
» We track top p-D subspace by tackling the non-convex, stochastic optimization:

,min fi(U) =E [Hr(t) - UUHr(t)H2] V>l (2)

> We follow the stochastic approximation to the objective function f(U):
FU; T = Tr((UUHUUH - 2UU”) f?(7;)) , (3)

where 7 C {1,2,...} is the set of observations made during the 7th batch.

> If r(t) is stationary for all t € T», then E[f(U; T-)] = f(U).
> When |75 | is large, f(U; T>) is a good approximation for f(U).
> No unitary constraint on the subspace U, no guarantee for a rank-p subspace.
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Review the Power Method (PM)

The PM works with a whole batch of samples in 7.
» Step 1: Generate a random vector as an initial point &(1, 7)

> Step 2: Fork=1,...,p

@ (C+1,7) = R(T:) @*(6,7) — i(rf‘(f))” (R(T) @t 7)) @(r), e =1, ..

j=t

a“(r) = a“(L, )/l (L, )l -

» Step 3: Output the top-p subspace: Upm(7) := [d'(7) 42(7) ... 4°(7)].

We use Uy to initialize the subspace and denote the above power process by

Upm(r) = PM({r(s)}ser.; Uo; L) ,

P-Oja for decentralized subspace estimation/tracking 5/ 19

, L



Review the Oja’s Learning Rule

The Oja’s learning rule works with one sample of r(t) at a time.
> Let Uoj(t) € CV*P be an estimate of U(t) at iteration t, we perform the updates:
Uoja(t + 1) = Uoja(t) — 7V F(Uoia(2): {t}) , (5)
with VA(O(t), {t}) = —2r(t)r" (1) O(t) + r(t)r (£) O(t) 0" (£) O(t) + O(t) 0" (t)r()r" (1) O(2) .
» Convergence for stationary r(t):
> When p =1 and ~v; = c¢/t, at a sub-linear rate of O(1/t) [BDF13];

> Y e =00, 7? < 00, converges almost surely to the principal p-dimensional
subspace, yet the convergence rate is not given.

» In practice, the Oja’s learning rule is often used for non-stationary r(t) with ;.
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Motivations for the Power-Oja (P-Oja) Method

Observations for PM and Oja:

» For PM, when r(t) is non-stationary and | 7| <« oo — a poor approximation for

k(ﬁ) to the true covariance — degraded performance.

» For Oja, the spectral gap,
p(R(T)) = 0p1(R(T))

is an important factor in determining the convergence speed [BDF13].

Our motivations:

» We want both advantages of the two methods:tracking and estimation accuracy.

» Try to increase the spectral gap.
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How to Increase the Spectral Gap

Our approach:

» Modify the stochastic approximation of the objective function:
fooa(U; T = Tr((UUHUUH - 2uu”)(k(¢))L) . (6)
Apparently, (R(T))" has a better spectral gap than R(T), i.e.,

ap((R(T)") = op1(R(T))") > 0p(R(T)) — 01 (R(T))-
» P-Oja tracks the subspace in a batch by batch manner:
» For the 7th batch, we have
Vieoia(Up0ja (1): Tr) = ~2(R(T7))" Upoja (7) + (R(T7))" Upoja () UFGy (7) Upoja ()
+ Opoja(7) Ufloja (1) (R(T2)) Upoja (1) -

> (R(7+))-Upoja(7): performing L rounds of the power iterations on Upoja(7) and we
can approximately calculate it by Upp(7) = PM({r(s)}seT;; UPOja(’T); L).
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The Power-Oja (P-Oja) Method

Finally, the P-Oja method is given by the following iterations:
Upoja (1 + 1) = Upoja(T) — 7= Vieosa(Uroia(7); T7) (7)
where @fpoja is the approximated gradient, evaluated as:

Vieoja(Upoia(7): T2) = Upui(7) Uposa(7) Uposa(7)
+ Uposs (1) Uboia (1) Upm () — 2Upua(7)

where Upn(7) & PM({r(s)}seT, ; Upcss(7); L).
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Some Remarks for Power-Oja

» The P-Oja method is parametrized by L and T
» T: controls the variance in the sampled covariance f\’(’ﬁ—)

> L: the acceleration given by the power method subroutine.
» P-Oja reduces into the Oja’s learning rule when p=1, T =1, L =1.

> If the samples in the batch is sufficient, we are very likely to obtain a rank-p
subspace. Recall that no guarantee for a rank-p subspace for Oja.
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Decentralization
Preliminaries:
» We denote the communication network between M processor units as an
undirected graph G = (V,E) such that V. ={1,...,. M} and EC V x V.
» The graph is assumed to be sparse and connected.
» A doubly stochastic matrix W associated with G, s.t. [W]; = 0 iff (i,j) ¢ E.

» Each processor unit locally processes its subarray’s sampling data, and meanwhile
exchanges information with its neighbors in G.

Cloud processors

Figure: Two examples: WiFi networks and Radar networks.
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Average Consesus

» Stored and computed in processor unit i:

> ri(t) € CH = [ry(£); ... ()]
> Gi(6,7) € CM =[G (6, 7); s g (€, 7)
> 20 = r,.H(t)ﬁ,-(Z,T) and 20

» The power iteration can be expressed as:

; r(s)r’(s)a(t, ) = GZT r(s)AC'({z)}j1:; K)

centralized: decentralized:
M

0 k1M ..k
Zi:l z; 7 =T Wy

with (|26 — (S, 20/M) 1 < D (W) [Fl|l20 — (X, 20/M) 1,

> The convergence rate depends on X, (W) [DKM*10].

> limk_ 00 Zjni1 sz =M- ACi({sz}j’\il; K) at a geometric rate in K [DKM*10].

P-Oja for decentralized subspace estimation/tracking 12 /19



An lllustration of Decentralized Power-Oja

> eyt (s)ya(e, )
Power Method €T,

€T
w =3 r()AC{rl (Wi, 1)} K)
. ~ seTr
‘ PM" ({T(s)}seﬁa Uroja(7), W, K, L)J

Uz‘
Oja’s Method M (T)

V f0a(Op0ia(7); T2) = U ppy (7) (U (1) Upoja(7)) '
+ ljlnga (T) (l—jg)ja (T)UPM (T)) . Qﬁz)M (T)

UFz;Oja(T +1)= ﬁéoj'a(T) - %ﬁféoj'a(ﬁPOja(T); 77)

l Uio(r + 1)

Key technique in Oja: A"B =" v,=>" (A)"B'.
—
pxp
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Some Remarks for Decentralized Power-Oja

» The message exchanged in the approximate gradient is a p X p matrix.
» It is crucial for us to choose a proper network topology.
K = K -
27 = 21| < |2 (W) " [lzo — 21|
> It is more economical to connect the nearby units with a higher probability while
the far-apart units with a lower probability.

» Example: small-world graph with optimal constant weights [XB04]:

2

W=1- )\1(L) + )\Nfl(L)L

where L is the Laplacian matrix.
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Numerical Simulations: parameter settings

» A massive array with N = 256 antennas grouped to M = 64 subarrays, each

equipped with four antennas.
» T = 1500, SNR= 20dB, the power iteration is L = 20.
> Degree-6 small-world graph with rewiring probability 0.2.

> v+ =5 x 107* for the Oja’s learning rule, 7; = 0.01t with P-Oja for stationary
signals and ~+ = 0.04t for non-stationary signals.
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Figure: Grouping antennas into subarrays with distributed processors for spectrum sensing.

P-Oja for decentralized subspace estimation/tracking 15 / 19



Numerical Simulations: for stationary signals
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Figure: The normalized objective value for a constant 2-D signal space.

> The convergence rate increases as T increases.

» The decentralized performance will approach the centralized one as K increases.

» The P-Oja method converges much faster than the Oja’s method, and the
decentralized algorithms work well under the chosen graph.
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Numerical Simulations: for non-stationary signals
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Figure: The normalized objective value for a variant 1-D signal space. The legend is the same
as that in Fig. 1, except for the number of gossip iterations is now K = 10. The
diamond-marked curve is the NOV for the conventional power method.

» As T increases, the convergence rate increases.

> The decentralized and centralized methods coincide with each other when K = 10.

» The power method cannot track the change of the covariance.
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Conclusions

» We propose P-Oja method to integrate the Oja’s learning rule and power method.

v

It exhibits both tracking ability and estimation accuracy.

v

All the computations are distributed into individual processor units.

v

Our simulation results demonstrate that the proposed P-Oja can both track the

change of statistic, but converges much faster than the conventional Oja method.
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Thank You

&&

Question Welcomed!
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