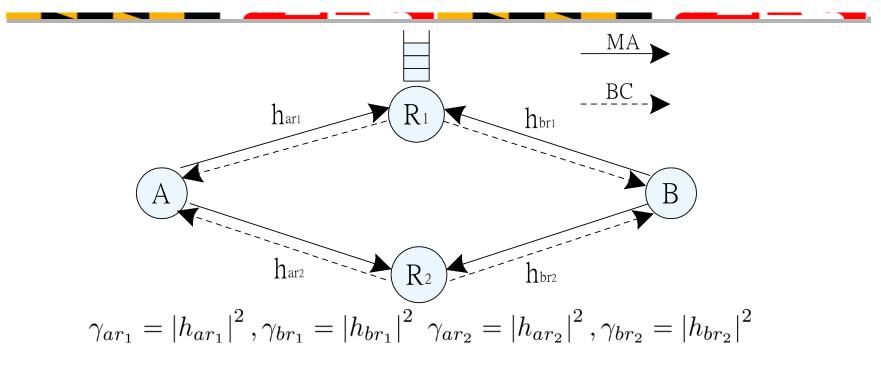
Diversity Analysis for Two-Way Multi-Relay Networks with Stochastic Energy Harvesting

Wei Li, Meng-Lin Ku, Yan Chen, K. J. Ray Liu


Department of Electrical and Computer Engineering, University of Maryland, College Park Department of Information and Communication Engineering, Xi'an Jiaotong University Department of Communication Engineering, National Central University

- EH two-way multi-relay networks with network coding
- Markov decision process with stochastic models
- Optimization of relay transmission policy
- □ Structure of optimal relay transmission policy
- Performance analysis of pairwise error probability

Two-Way Multi-Relay Networks with Network Coding

Relay cooperation protocol:

Amplify-and-Forward (AF), Space-Time Network Coding (STNC)

Channel assumptions:

- \succ Quasi-static and Rayleigh flat fading, $\mathcal{CN}(0,1)$
- Channels are reciprocal
- ➢ All nodes are half-duplex.

Transmission Protocol with STNC (MA Phase)

	MA Phase	
	Slot 1	Slot 2
Α	s_{a1}	s_{a2}
В	s_{b1}	s_{b2}
R1	\mathbf{y}_{sr_1}	
R2	\mathbf{y}_{sr_2}	

$$\mathbf{y}_{sr_l} = h_{ar_l} \sqrt{P} \mathbf{s}_a + h_{br_l} \sqrt{P} \mathbf{s}_b + \mathbf{n}_{sr_l}, \\ l \in \{1, 2\}, \mathbf{n}_{sr_l} \sim \mathcal{CN}(0, N_0 \mathbf{I})$$

$$x_{r_l} = \alpha_l \theta_l^{\mathrm{T}} \mathbf{y}_{sr_l}$$

AF factor: $\alpha_l = \sqrt{\frac{P_{r_l}}{P\gamma_{ar_l} + P\gamma_{br_l} + N_0}}$

Space Time Network Coding:

$$\Theta = \begin{pmatrix} \theta_1, & \theta_2, & \cdots, & \theta_L \end{pmatrix}$$
$$= \frac{1}{\sqrt{L}} \begin{pmatrix} 1 & 1 & \cdots & 1\\ \theta_1 & \theta_2 & \cdots & \theta_L\\ \vdots & \vdots & \ddots & \vdots\\ \theta_1^{L-1} & \theta_2^{L-1} & \cdots & \theta_L^{L-1} \end{pmatrix}$$
$$\theta_l = \exp\left(j\frac{4l-1}{2L}\pi\right) \text{ for } l = 1, 2, \cdots, L$$

It meets full diversity criterion and minimum product criterion.

Transmission Protocol with STNC (BC Phase)

	BC Phase	
	Slot 1	Slot 2
R1	x_{r_1}	
R2		x_{r_2}
Α	y_{r_1a}	y_{r_2a}
В	y_{r_1b}	y_{r_2b}

$$y_{r_l a} = h_{ar_l} x_{r_l} + n_{r_l a}$$

= $h_{ar_l} \alpha_l \theta_l^{\mathrm{T}} (h_{ar_l} \sqrt{P} \mathbf{s}_a + h_{br_l} \sqrt{P} \mathbf{s}_b + \mathbf{n}_{sr_l}) + n_{r_l a}$

$$\begin{split} \tilde{y}_{r_l a} &= h_{ar_l} h_{br_l} \alpha_l \sqrt{P} \theta_l^{\mathrm{T}} \mathbf{s}_b + h_{ar_l} \alpha_l \theta_l^{\mathrm{T}} \mathbf{n}_{sr_l} + n_{r_l a} \\ &= h_{ar_l} h_{br_l} \alpha_l \sqrt{P} \theta_l^{\mathrm{T}} \mathbf{s}_b + \tilde{n}_{r_l a}, \\ &\tilde{n}_{r_l a} \sim \mathcal{CN}(0, (\gamma_{ar_l} \alpha_l^2 + 1) N_0) \end{split}$$

Instant Pairwise Error Propability (PEP)

Observing $\{\tilde{y}_{r_l a}\}_{l=1}^2$, Source A exploits MLD method to jointly decode \mathbf{s}_b

$$\hat{\mathbf{s}}_{b} = \arg\min_{\mathbf{s}_{b} \in \mathcal{A}_{s}^{2}} \sum_{l=1}^{2} \frac{\left\| \tilde{y}_{r_{l}a} - h_{ar_{l}} h_{br_{l}} \alpha_{l} \sqrt{P} \theta_{l}^{\mathrm{T}} \mathbf{s}_{b} \right\|^{2}}{(\gamma_{ar_{l}} \alpha_{l}^{2} + 1) N_{0}}$$

Instant PEP (pairwise error probability) of Source A for one channel realization

$$\Pr\left(\mathbf{s}_{b} \to \tilde{\mathbf{s}}_{b} | \{\gamma_{ar_{l}}\}_{l=1}^{2}, \{\gamma_{br_{l}}\}_{l=1}^{2}\right) = Q\left(\sqrt{2W_{R_{1}} + 2W_{R_{2}}}\right)$$
$$= \frac{1}{\pi} \int_{0}^{\pi/2} \exp\left(-\frac{W_{R_{1}} + W_{R_{2}}}{\sin^{2}\theta}\right) d\theta$$
$$< \exp\left(-W_{R_{1}}\right) \times \frac{1}{\pi} \int_{0}^{\pi/2} \exp\left(-\frac{W_{R_{2}}}{\sin^{2}\theta}\right) d\theta$$
$$= P_{e,R_{1}} \times P_{e,R_{2}}$$

$$W_{R_{l}} = \frac{\gamma_{ar_{l}}\gamma_{br_{l}}\alpha_{l}^{2}P\left|\theta_{l}^{\mathrm{T}}\Delta\mathbf{s}_{b}\right|^{2}}{4(\gamma_{ar_{l}}\alpha_{l}^{2}+1)N_{0}} = \frac{\gamma_{ar_{l}}\gamma_{br_{l}}P_{R_{l}}P\beta_{l}}{4\left[\left(P+P_{R_{l}}\right)\gamma_{ar_{l}}+P\gamma_{br_{l}}+N_{0}\right]N_{0}}$$
$$\Delta\mathbf{s}_{b} = \mathbf{s}_{b} - \tilde{\mathbf{s}}_{b} \neq 0, \quad \beta_{l} = \left|\theta_{l}^{\mathrm{T}}\Delta\mathbf{s}_{b}\right|^{2}$$

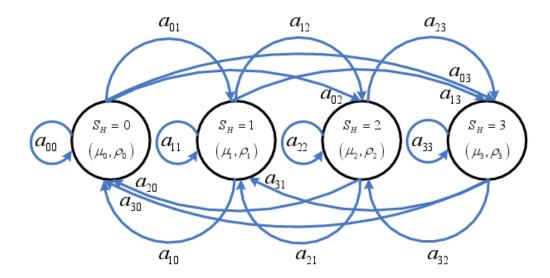
- Introduction
- EH two-way multi-relay networks with network coding
- Markov decision process with stochastic models
- Optimization of relay transmission policy
- □ Structure of optimal relay transmission policy
- Performance analysis of pairwise error probability

Markov Decision Process with Stochastic Models

□ State space $S = S_E \times S_{AR} \times S_{BR} \times S_B$ solar power state subspace: $S_E = \{0, 1, \dots, N_e - 1\}$ channel state subspace: $S_{AR} = \{0, 1, \dots, N_c - 1\}$ $S_{BR} = \{0, 1, \dots, N_c - 1\}$ battery state subspace: $S_B = \{0, 1, \dots, N_b - 1\}$

Relay action space $\mathcal{W} = \{0, 1, \dots, N_p - 1\} (N_p \le N_b)$

Reward function


Conditional PEP, i.e., the PEP conditioned on a fixed system state and relay action

Stochastic Solar Power Model

N_e-state Gaussian mixture hidden Markov model

solar power per unit area: $P_H \sim \mathcal{N}(\mu_e, \rho_e), e \in \mathcal{S}_E = \{0, 1, \dots, N_e - 1\}$ solar state transition probability: $P(S_E = j | S_E = i) = a_{ij}$

Ref: M.-L. Ku, Y. Chen, and K. J. R. Liu, "Data-Driven Stochastic Transmission Policies for Energy Harvesting Sensor Communications," *IEEE J. Select. Areas Commun.*, vol. 33, no. 8, pp. 1505-1520, Aug. 2015.

Harvested Energy Storage

Harvesting-store-and-use (HSU) protocol

Quantization model

basic transmission power: P_U one basic energy quantum: $E_U = P_U \cdot \frac{T}{2}$

harvested energy during one policy period *T*: $E_H = P_H T s \eta$. EH probability in terms of the number of harvested energy quanta:

$$P(Q = q \mid S_E = e) \text{ for } q \in \{0, 1, \cdots, \infty\}$$

Battery State

Available energy quanta in the relay battery:

$$b \cdot E_U, \ b \in \mathcal{S}_B = \{0, 1, \cdots, N_b - 1\}$$

Battery transition model:

$$b' = b - w + q, \ w \in \{0, 1, \cdots, \min(b, N_p - 1)\}$$

Battery state transition probability under the solar state and relay action

$$P_{w}(S_{B} = b' | S_{B} = b, S_{E} = e) = \begin{cases} P(Q = b' - b + w | S_{E} = e), b' = (b - w), \dots, N_{b} - 2\\ 1 - \sum_{q=0}^{N_{b} - 2 - b + w} P(Q = q | S_{E} = e), b' = N_{b} - 1 \end{cases}$$

Ref: M.-L. Ku, Y. Chen, and K. J. R. Liu, "Data-Driven Stochastic Transmission Policies for Energy Harvesting Sensor Communications," *IEEE J. Select. Areas Commun.*, vol. 33, no. 8, pp. 1505-1520, Aug. 2015.

Channel State

 \succ N_c-state Markov chain

$$\Gamma = \left\{ 0 = \Gamma_0, \Gamma_1, \cdots, \Gamma_{N_c} = \infty \right\} \qquad S_{AR} = i \Leftrightarrow \gamma_{AR} \in \left[\Gamma_i, \Gamma_{i+1} \right)$$

Channel state stationary probability

$$P(H=i) = \int_{\Gamma_i}^{\Gamma_{i+1}} \frac{1}{\lambda} \exp\left(-\frac{\gamma}{\lambda}\right) d\gamma = \exp\left(-\frac{\Gamma_i}{\lambda}\right) - \exp\left(-\frac{\Gamma_{i+1}}{\lambda}\right).$$

> Channel state transition probability $h(\gamma) = f_D \sqrt{2\pi\gamma/\lambda} \exp(-\gamma/\lambda)$

$$P(H = j | H = i) = \begin{cases} \frac{h(\Gamma_{i+1})}{P(H = i)}, j = i+1, i = 0, 1, \dots, N_c - 2\\ \frac{h(\Gamma_i)}{P(H = i)}, j = i-1, i = 1, 2, \dots, N_c - 1\\ 1 - \frac{h(\Gamma_i)}{P(H = i)} - \frac{h(\Gamma_{i+1})}{P(H = i)}, j = i, i = 1, \dots, N_c - 2 \end{cases}$$

Ref: H. S. Wang and N. Moayeri, "Finite-State Markov Channel-A Useful Model for Radio Communication Channels," *IEEE Trans. Wireless Commun.*, vol. 44, no. 1, pp. 163-171, Feb. 1995.

System States

System state transition probability

$$S = (Q_{e}, H_{ar}, H_{br}, Q_{b}) \in S$$

$$P_{w} \{ s = (e', f', g', b') | s = (e, f, g, b) \}$$

$$= P(S_{E} = e' | S_{E} = e) \cdot P(S_{AR} = f' | S_{AR} = f) \cdot P(S_{BR} = g' | S_{BR} = g)$$

$$\cdot P_{w} (S_{B} = b' | S_{B} = b, S_{E} = e)$$

Reward Function

Conditional PEP: the PEP conditioned on a fixed system state and relay action

$$R_w \left(S = (e, b, f, g) \right) \triangleq P_{e, R_1}(w, f, g)$$
$$= \frac{\int_{\Gamma_g}^{\Gamma_g + 1} \int_{\Gamma_f}^{\Gamma_f + 1} \exp\left(-\gamma_1\right) \cdot \exp\left(-\gamma_2\right) \cdot \exp\left(-W_{R_1}\right) d\gamma_1 d\gamma_2}{P\left(S_{AR} = f\right) \cdot P\left(S_{BR} = g\right)}$$

Let
$$P = P_{R_2} = P_U, P_{R_1} = w P_U, \eta = \frac{P_U}{N_0},$$

$$W_{R_1} = \frac{\gamma_1 \gamma_2 w \eta^2 \beta_1}{4 \left[(w+1) \eta \gamma_1 + \eta \gamma_2 + 1 \right]}$$

Asymptotic Approximations of Reward Function

When
$$w = 0$$
, $P_{e,R_1}(w = 0, f, g) = 1$.

When $w \ge 1$ and $\eta = \frac{P_U}{N_0} \gg 1, W_{R_1} \approx \frac{w\eta\beta_1\gamma_1\gamma_2}{4(\gamma_1 + \gamma_2)}.$ Considering $\frac{1}{2}\min(x, y) \le \frac{xy}{x+y} \le \min(x, y)$ $P_{e,R_1}^{(up)}(w \ge 1, f, g) \approx \begin{cases} \frac{8\eta^{-1}}{w\beta_1(1-e^{-\Gamma_1})}, & \min(f, g) = 0; \\ 0, & \min(f, g) \ge 1. \end{cases}$ $P_{e,R_1}^{(lo)}(w \ge 1, f, g) \approx \begin{cases} \frac{4\eta^{-1}}{w\beta_1(1-e^{-\Gamma_1})}, & \min(f, g) = 0; \\ 0, & \min(f, g) \ge 1. \end{cases}$

Introduction

- EH two-way multi-relay networks with network coding
- Markov decision process with stochastic models
- Optimization of relay transmission policy
- □ Structure of optimal relay transmission policy
- Performance analysis of pairwise error probability

Optimization of Relay Transmission Policy

Define the policy $\pi(s): S \rightarrow A$ as the relay action in the state s

the expected discount long-term reward

$$V_{\pi}(s_0) = E_{\pi}\left[\sum_{k=0}^{\infty} \lambda^k R_{\pi(s_k)}(s_k)\right], \quad s_k \in \mathcal{S}, \quad \pi(s_k) \in \mathcal{A}.$$

the optimal policy can be found through the Bellman equation

$$V_{\pi^*}(s) = \min_{w \in W} \left(R_w(s) + \lambda \sum_{s' \in S} P_w(s' \mid s) V_{\pi^*}(s') \right), \quad s \in \mathcal{S}.$$

the well-known value iteration approach can be applied to find the optimal policy

$$V_{w}^{i+1}(s) = R_{w}(s) + \lambda \sum_{s' \in S} P_{w}(s' \mid s) V^{(i)}(s'), \quad s \in S, \quad w \in \mathcal{W};$$
$$V^{i+1}(s) = \min_{w \in W} \left(V_{w}^{i+1}(s) \right), \quad s \in S.$$
$$\left| V^{i+1}(s) - V^{i}(s) \right| \le \varepsilon$$

Introduction

- Two-way energy harvesting relay networks
- Markov decision process with stochastic models
- Optimization of relay transmission policy
- □ Structure of optimal relay transmission policy
- Performance analysis of pairwise error probability

Non-Conservative Property of Optimal Relay Transmission Policy

Proposition 1: For any fixed system state $s = (e, f, g, b \ge 1) \in S$ with the non-empty battery, in high SNR regimes, i.e., $\frac{P_U}{N_0} \gg 1$, the optimal relay power action w^* must be larger than or equal to one.

Long term value of State s in the *i-th* iteration:

$$V_{w}^{(i+1)}(s) = R_{w}(f,g) + \lambda \cdot \mathbb{E}_{e,f,g,b} \left[V^{(i)}\left(e',f',g',\min\left(b-w+q,N_{b}-1\right)\right) \right]$$

The difference between the long-tem values of the two relay action:

$$V_{w\geq 1}^{(i+1)}(e, f, g, b) - V_{w=0}^{(i+1)}(e, f, g, b)$$

= $R_{w\geq 1}(f, g) - R_{w=0}(f, g)$
+ $\lambda \cdot \mathbb{E}_{e, f, g, b} \left[V^{(i)}(e', f', g', \min(b-w+q, N_b-1)) - V^{(i)}(e', f', g', \min(b+q, N_b-1)) \right]$

We have: $V_{w\geq 1}^{(i+1)}(e, f, g, b) - V_{w=0}^{(i+1)}(e, f, g, b) < 0$

Thus, the optimal action: $w^* \ge 1$, if b > 0

Introduction

- EH two-way multi-relay networks with network coding
- Markov decision process with stochastic models
- Optimization of relay transmission policy
- Structure of optimal relay transmission policy
- Performance analysis of pairwise error probability

Expected Reward Analysis

Expected reward w.r.t. the optimal policy: ${}^{*}\pi$

$$\bar{R} = \sum_{s \in \mathcal{S}} p_{\pi^*} (s = (e, b, f, g)) \times R_{w^* = \pi^*(s)} (s = (e, b, f, g))$$
$$= \sum_{s \in \mathcal{S}, b = 0} p_{\pi^*}(s) \times R_{w^* = 0}(s) + \sum_{s \in \mathcal{S}, b \ge 1} p_{\pi^*}(s) \times R_{w^* \ge 1}(s)$$
$$= P_{\pi^*}(b = 0) \cdot P_{e, R_2} + \sum_{s \in \mathcal{S}, b \ge 1} p_{\pi^*}(s) \cdot P_{e, R_2} \cdot P_{e, R_1}(w^* \ge 1, f, g)$$

The asymptotic approximations of PEP w.r.t. the optimal policy:

$$\bar{R}^{(\text{up})} \approx P_{\pi^*}(b=0) \cdot P_{e,R_2} + \sum_{s \in \mathcal{S}_0} \frac{8 \cdot p_{\pi^*}(s) \cdot P_{e,R_2}}{w^* \beta_1 \left(1 - e^{-\Gamma_1}\right) \eta}$$

$$\bar{R}^{(\text{lo})} \approx P_{\pi^*}(b=0) \cdot P_{e,R_2} + \sum_{s \in \mathcal{S}_0} \frac{4 \cdot p_{\pi^*}(s) \cdot P_{e,R_2}}{w^* \beta_1 \left(1 - e^{-\Gamma_1}\right) \eta}$$

where $S_0 = \{s = (e, f, g, b), \min(f, g) = 0, b \ge 1, s \in S\}$

Diversity Order

$$P_{PEP,R_2} = \frac{1}{\pi} \int_0^{+\infty} \int_0^{+\infty} \int_0^{\pi/2} \exp\left(-\gamma_1\right) \cdot \exp\left(-\gamma_2\right) \cdot \exp\left(-\frac{W_{R_2}}{\sin^2\theta}\right) d\theta d\gamma_1 d\gamma_2$$

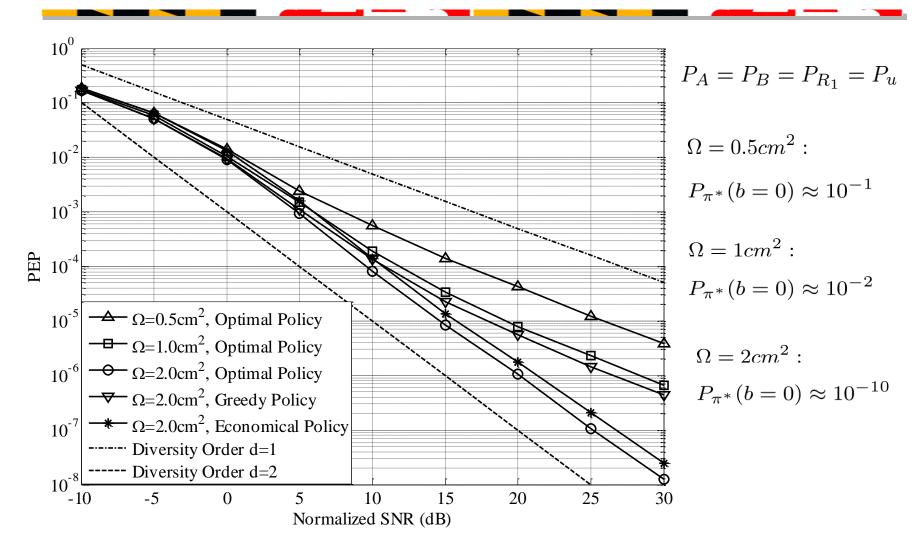
where
$$W_{R_2} = \frac{\gamma_1 \gamma_2 \eta^2 \beta_2}{4 \left(2\eta \gamma_1 + \eta \gamma_2 + 1\right)}$$

Since
$$P_{PEP,R_2} \propto \frac{\eta^{-1}}{\alpha_2}, \ (\eta = P_U/N_0 \ge 1)$$

$$\bar{R} \propto \frac{P_{\pi^*}(b=0)}{\beta_2} \eta^{-1} + \frac{\sum_{s \in \mathcal{S}_0} p_{\pi^*}(s)}{w^* \left(1 - e^{-\Gamma_1}\right) \beta_1 \beta_2} \eta^{-2}$$

Theorem: If
$$P_{\pi^*}(b=0) = 0, \ d=2.$$

If $P_{\pi^*}(b=0) > 0, \ d=1.$


Simulation Results

SIMULATION PARAMETERS

Modulation type	QPSK
Basic transmission power (P_U)	10 m W
Policy management period (T)	300s
Energy conversion efficiency (η)	20%
Channel simulation model	Jakes' model
Normalized Doppler frequency (f_D)	0.05
Channel quantization thresholds (Γ)	$\{0, 0.3, 0.6, 1.0, 2.0, 3.0, \infty\}$
Discount factor (λ)	0.99

Simulation Results of Optimal PEP

Wei Li – Diversity Analysis for Two-Way Multi-Relay Networks with Stochastic Energy Harvesting 12/15/2015

Thank you!

