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Introduction

What is waterfilling?

Waterfilling problem (WFP) allocates powers to the resources of the
transmitting user. These allocated powers maximize the
transmitting user’s capacity while following the total power budget.

The resource’s allocated power is inversely proportional to the noise
level of the resource in WFP.

Resources are the sub-carriers in Orthogonal Frequency Division
Multiplexing (OFDM) or the normal frequency bands or the usage of
the same sub-carriers in different time slots.

WFP finds applications in various fields of communication systems.

What is the challenge?

It is a nonlinear problem and fast computation will make
implementation easy.
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Introduction...

Traditionally, the problem is solved iteratively 1.

However Number of Iterations is not known apriori

Computationally complex and results in loss of capacity.

Of late ‘exact’(fixed computational complexity) algorithms have
been developed to solve this problem 2 , 3

These work only with the Traditional Water Filling (TWF) and it’s
minor variants.

1W. Yu, G. Ginis, and J. M. Cioffi, “Distributed multiuser power control for digital
subscriber lines,” IEEE J. Sel. Areas Commun., vol. 20, no. 5, Jun. 2002

2D. P. Palomar and J. R. Fonollosa, “Practical algorithms for a family of waterfilling
solutions,” IEEE Trans. Signal Process., vol. 53, no. 2, pp. 686695, Feb. 2005 ;

3P. He, L. Zhao, S. Zhou, and Z. Niu, “Water-filling: A geometric approach and its
application to solve generalized radio resource allocation problems,” IEEE Trans.
Wireless Commun., vol. 12, no. 7, Jul. 2013.
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Introduction...

Traditional waterfilling problem (TWF) is described as

max
Pi

C =
M∑
i=1

log2

(
1 +

Pi

Ni

)

with constraints :
M∑
i=1

Pi ≤ Pt ,

Pi ≥ 0, 1 ≤ i ≤ M; (1)

where power budget is Pt

sequence {Ni}Mi=1, corresponding to M user resources/subchannels

TWF does not have weights.
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Introduction...

The solution to (1) is obtained by using KKT conditions as

Pi =

(
1

λ
− Ni

)+

; i = 1, · · · ,M;

M∑
i=1

Pi ≤ Pt (2)

where

A+ , max(A, 0),

λ is the Lagrangian and 1
λ indicates the ‘water level’.

Substituting Pi in the sum power constraint, we can solve for λ;
provided we know the i ’s for which Pi is positive.
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The Generalized Waterfilling Problem (GWFP)

• The GWFP is described by

max
Pi

C =
M∑
i=1

wi log2

(
1 +

Pi

Ni

)
(3)

with constraints:
M∑
i=1

xiPi ≤ Pt (4)

&Pi ≥ 0, i ≤ M. (5)

where xi ,wi are corresponding weights.
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GWFP ...

GWFP is used to solve a wide family of WaterFilling Problems :

wi = xi = 1 converts GWFP to TWF

xi = 1 ⇒ MAC scheduling with weights wi representing the
priorities of the users or the length of the queues of the users

wi = 1 ⇒ In Cognitive Radio, xi is the i th subcarrier gain from the
secondary user to the primary.

wi 6= 1 & xi 6= 1 ⇒ In downlink, wi ’s are the priorities of the users
and xi ’s are the gains from Base station to the user.
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Equivalence based Waterfilling (EBWF)

EBWF...

For convenience of presentation, the case where xi = 1, ∀i is called
the Weighted Waterfilling Problem (WWFP).

Solution of (3)-(5) (or GWFP) is given by

Pi =
wi

xi

(
1

λ
− N̄i

)+

; i = 1, · · · ,M;

M∑
i=1

xiPi ≤ Pt (6)

where

A+ , max(A, 0), λ is the Lagrangian and
1
λ indicates the ‘water level’ of the GWFP.
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Equivalence based Waterfilling (EBWF)

EBWF...

Lemma

For every GWFP, defined in (3)-(5), there exists a WWFP of the form

max
Pi

C =
M∑
i=1

w̃i log2

(
1 +

Pi

Ni

)
with constraints :
M∑
i=1

Pi ≤ Pt , Pi ≥ 0, 1 ≤ i ≤ M; (7)

where w̃i = wi/xi ∀i . Moreover, the WWFP has the same solution as the
GWFP.

In what follows we assume a WWFP only.
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Equivalence based Waterfilling (EBWF)

Preliminaries

Definition (The Number of Positive Powers, K )

Let I = {i ;3 Pi > 0} be the set of indices where Pi is positive. Then
the number of positive powers, K = |I|, is the cardinality of the set, I.

Without loss of generality, we assume that N̄i ’s are sorted in
ascending order.
It follows that, Pi ; i = 1, · · · ,M are in descending order and the
first K powers are positive. Accordingly,

Pi =

{
w̃i

[
1
λ − N̄i

]
, 1 ≤ i ≤ K ;

0, otherwise.
. (8)

From the weighted sum power constraint (6) , we have

K

λ
= Pt +

K∑
i=1

N̄i . (9)
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Equivalence based Waterfilling (EBWF)

Concept of Equivalence

Note that in (9) the unknowns are on the LHS and depend on the
power budget, Pt and weighted sum

∑K
i=1 N̄i .

Note that the nonlinearity is due to
∑K

i=1 N̄i .

Observe that two different GWFP’s with different N̄i ’s but have the
same weighted sum

∑K
i=1 N̄i will have the same K .

Definition (l-Equivalent Waterfilling Problems)

For a given l , two WFPs are said to be l-Equivalent Waterfilling
Problems if

1 They have the same weighted sum, Ψ(l) =
∑l

i=1 N̄i =
∑l

i=1
Ni
wi

,

2 The l-th step N̄l is same.

i.e. the total ‘water’ contained in l-equivalent waterfilling problems is
same in the l-th step.
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Equivalence based Waterfilling (EBWF)

Examples of l-Equivalent WFPs
Proposition

For every WWFP constructed, the following inequalities hold:

i)
K−1∑
m=1

(
N̄K − N̄m

)
< Pt & ii)

K∑
m=1

(
N̄K+1 − N̄m

)
≥ Pt (10)

(a) Given WWFP (b) 1-step WFP (c) 1-step WFP area
Equal ‘sum of noise levels’ (slanted dashes) for both Fig. (a) & Fig. (b)
(K=3 in figure).
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Equivalence based Waterfilling (EBWF)

1-Step WFP

1-Step WFP :

wi = xi = 1 and N̄i = d , i ≤ m and N̄i = s, i ≥ m with s > d .

ΨS(l) =
l∑

i=1

N̄i =

{
ld , l ≤ m,
ld + s(l −m), otherwise.

(11)

In 1-Step WFP, K takes one of the two values :

K =

{
m, (s − d)m ≥ Pt ;→ ms ≥ Pt +

∑m
i=1 N̄i → ms ≥ dm

M, otherwise.
(12)

This WFP does not occur in practical scenarios, but we will use it to
obtain a solution for practical WWFP’s.

1-step is a WFP with a closed form solution for K . We can define
more examples by assuming a structure on the N̄i ’s.
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Equivalence based Waterfilling (EBWF)

General l-Equivalence based Waterfilling for obtaining K

Require: Inputs required are M, Pt , N̄i (in ascending order).
Ensure: Output is K .

1: Let m = 1. Construct an equivalent WFP (Arithemtic or Geometric
or 1–step) for m.

2: Find the K for the equivalent WFP denoted as Keq .
3: if Keq == m then
4: K = Keq; Exit the algorithm.
5: else
6: increment m and go to 2.
7: end if

This algorithm gives the general setup for obtaining algorithms for
solving GWFP based on a WFP with known K

We now give the detailed implementation of EBWF using 1-step
WFP
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Equivalence based Waterfilling (EBWF)

EBWF using 1-step WFP

Require: Inputs required are M, Pt , N̄i (in ascending order).
Ensure: Output is K .

1: i = 1. Denote d0 = Pt .
2: Calculate di = di−1 + N̄i .
3: Calculate s, the second step, of the 1–step l-equivalent WFP for

each i (denoted by si ) as si = Ni+1

4: if isi > di then
5: K ← i . Exit the algorithm.
6: else
7: i ← i+1, Go to 2
8: end if
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Equivalence based Waterfilling (EBWF)

EBWF Geometric Interpretation

This algorithm lends itself to a nice geometric interpretation:

the term isi gives the total area of i steps;

di gives the area of the i ‘Noise’ steps along with Pt

the difference, isi − (di − Pt), is the area where the ‘water can be
poured’

If isi > di , then the number of steps is ‘enough’ to store all the
water.
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Equivalence based Waterfilling (EBWF)

Calculating the Powers and Computational Complexity

Calculate the water level as 1
λ = dK

K .

Calculate K powers using the water level & (6).

Table: Computational Complexity of various known solutions to WWFP

No. of No. of No. of No. of No. of No. of flops
flops flops flops in flops in flops in proposed

in PWFA in IWFA algo. of [6] algo. of [7] in GWF of [5] solution
( no. of ( no. of

iterations )× iterations ) × M(M+3)
2 8M + 3[5] 4(M+1)

O(M2) ( 5M + 1 ) (M−K+7)(M+K)
2 +

[3] + 2M 2K(2K+1)

Observe the reduction by a factor of 2
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Equivalence based Waterfilling (EBWF)

Simulation Results

Table: Computational complexities of existing and the proposed solution for
WWFP, Pt = 1, σ2 = 10−1 . hi , wi & xi are exponentially distributed with
variance 1

No. of No. of No. of No. of No. of No. of flops
M → K flops in flops in flops flops in flops in in proposed

PWFA IWFA in [6] [7] GWF solution
128 → 27 40599552 28460 8370 11354 1027 161

(2478) (44)

192 → 32 136691712 44590 18704 22880 1539 191
(3708) (46)

256 → 42 236781568 58157 32929 40292 2051 251
(3613) (45)

512 → 53 1.2336e+009 121391 131645 143182 4099 317
(4706) (47)

1024 → 73 7.3725e+009 268340 525463 547286 8195 437
(7031) (52)

Number of flops in IWFA, algorithms of [6] & [7] > O(102) ×
number of flops in PS. (PS → proposed solution)

Number of flops in GWF of [5] > O(10) × number of flops in PS.
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Conclusion

1 We have proposed solutions for doing power allocation to
Generalized Water filling problem namely GWFP.

2 The proposed solutions produce optimal powers.

3 Also, the number of flops for GWFP are of O(M) and are far less
than the computation complexities of existing algorithms.
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Thank you....
         ????
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