Fast Computation of Generalized Waterfilling Problems

Presented by Kalpana

co-author : Mohammed Zafar Ali Khan

Department of Electrical Engineering Indian Institute of Technology Hyderabad

Dec 14, 2015

भारतीय प्रौद्योगिकी संस्थान हैदराबाद ndian Institute of Technology Hyderaba

rod	110	÷.	or	
luu				

Outline

1. Introduction

- 2. Generalized Waterfilling problem (GWFP)
- 3. Conclusion and Future work
- 4. References

भारतीय प्रौद्योगिकी संस्थान हैवराबाद Indian Institute of Technology Hyderabad

イロン イヨン イヨン イヨン

- What is waterfilling?
- Waterfilling problem (WFP) allocates powers to the resources of the transmitting user. These allocated powers maximize the transmitting user's capacity while following the total power budget.
- The resource's allocated power is inversely proportional to the noise level of the resource in WFP.
- Resources are the sub-carriers in Orthogonal Frequency Division Multiplexing (OFDM) or the normal frequency bands or the usage of the same sub-carriers in different time slots.
- WFP finds applications in various fields of communication systems.
- What is the challenge?
- It is a nonlinear problem and fast computation will make implementation easy.

Introduction...

- Traditionally, the problem is solved iteratively ¹.
- However Number of Iterations is not known apriori
- Computationally complex and results in loss of capacity.
- Of late 'exact' (fixed computational complexity) algorithms have been developed to solve this problem ², ³
- These work only with the Traditional Water Filling (TWF) and it's minor variants.

¹W. Yu, G. Ginis, and J. M. Cioffi, "Distributed multiuser power control for digital subscriber lines," IEEE J. Sel. Areas Commun., vol. 20, no. 5, Jun. 2002

²D. P. Palomar and J. R. Fonollosa, "Practical algorithms for a family of waterfulner solutions," IEEE Trans. Signal Process., vol. 53, no. 2, pp. 686695, Feb. 2005; ³P. He, L. Zhao, S. Zhou, and Z. Niu, "Water-filling: A geometric approach and its application to solve generalized radio resource allocation problems," IEEE Translation during the Wireless Commun., vol. 12, no. 7, Jul. 2013.

Introduction...

Traditional waterfilling problem (TWF) is described as

$$\begin{aligned} \max_{P_i} \ C &= \sum_{i=1}^{M} \log_2 \left(1 + \frac{P_i}{N_i} \right) \\ \text{with constraints} &: \sum_{i=1}^{M} P_i \leq P_t, \\ P_i &\geq 0, 1 \leq i \leq M; \end{aligned}$$
(1)

< ロ > < 同 > < 回 > < 回 >

- where power budget is P_t
- sequence $\{N_i\}_{i=1}^M$, corresponding to *M* user resources/subchannels
- TWF does not have weights.

भारतीय प्रौद्योगिकी संस्थान श्वेदराबाद Indian Institute of Technology Hyderaba

Introduction The Generalized Waterfilling Problem (GWFP) Conclusion References

• The solution to (1) is obtained by using KKT conditions as

$$egin{split} & P_i = \left(rac{1}{\lambda} - N_i
ight)^+; i = 1, \cdots, M; \ & \sum_{i=1}^M P_i \leq P_t \end{split}$$

(2)

where

- $A^+ \triangleq \max(A, 0)$,
- λ is the Lagrangian and $\frac{1}{\lambda}$ indicates the 'water level'.
- Substituting P_i in the sum power constraint, we can solve for λ ; provided we know the *i*'s for which P_i is positive.

The Generalized Waterfilling Problem (GWFP)

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

イロン イヨン イヨン イヨン

The Generalized Waterfilling Problem (GWFP)

• The GWFP is described by

$$\max_{P_i} C = \sum_{i=1}^{M} w_i \log_2 \left(1 + \frac{P_i}{N_i} \right)$$
(3)

with constraints:

$$\sum_{i=1}^{M} x_i P_i \le P_t$$

$$\& P_i \ge 0, i \le M.$$

where x_i , w_i are corresponding weights.

(4)

भारतीय प्रौद्योगिकी संस्थान हैदराबाद ndian Institute of Technology Hyderabac

GWFP ...

GWFP is used to solve a wide family of WaterFilling Problems :

- $w_i = x_i = 1$ converts GWFP to TWF
- x_i = 1 ⇒ MAC scheduling with weights w_i representing the priorities of the users or the length of the queues of the users
- *w_i* = 1 ⇒ In Cognitive Radio, *x_i* is the *ith* subcarrier gain from the secondary user to the primary.
- w_i ≠ 1 & x_i ≠ 1 ⇒ In downlink, w_i's are the priorities of the users and x_i's are the gains from Base station to the user.

	The Generalized Waterfilling Problem (GWFP) ●000000000000	Conclusion	References
Equivalence based Wat	erfilling (EBWF)		

Equivalence based Waterfilling (EBWF)

भारतीय प्रौद्योगिकी संस्थान हैवराबाव Indian Institute of Technology Hyderabad

11/28

・ロト ・回ト ・ヨト ・ヨト

	The Generalized Waterfilling Problem (GWFP) ००●००००००००	Conclusion	References
Equivalence base	d Waterfilling (EBWF)		
EBWF			

- For convenience of presentation, the case where $x_i = 1$, $\forall i$ is called the Weighted Waterfilling Problem (WWFP).
- Solution of (3)-(5) (or GWFP) is given by

$$P_{i} = \frac{w_{i}}{x_{i}} \left(\frac{1}{\lambda} - \bar{N}_{i}\right)^{+}; i = 1, \cdots, M;$$
$$\sum_{i=1}^{M} x_{i} P_{i} \leq P_{t}$$

where

- $A^+ \triangleq \max(A, 0)$, λ is the Lagrangian and
- $\frac{1}{\lambda}$ indicates the 'water level' of the GWFP.

(6)

	The Generalized Waterfilling Problem (GWFP)	Conclusion	References
Equivalence based V	Vaterfilling (EBWF)		

EBWF...

Lemma

For every GWFP, defined in (3)-(5), there exists a WWFP of the form

$$\max_{P_i} C = \sum_{i=1}^{M} \tilde{w}_i \log_2 \left(1 + \frac{P_i}{N_i} \right)$$
with constraints :
$$\sum_{i=1}^{M} P_i \le P_t, \ P_i \ge 0, 1 \le i \le M;$$
(7)

< ロ > < 同 > < 回 > < 回 >

where $\tilde{w}_i = w_i/x_i \ \forall i$. Moreover, the WWFP has the same solution as the GWFP.

• In what follows we assume a WWFP only.

	The Generalized Waterfilling Problem (GWFP) 0000●00000000	Conclusion	References
Equivalence based Wat	erfilling (EBWF)		

Preliminaries

Definition (The Number of Positive Powers, K)

Let $\mathcal{I} = \{i; \exists P_i > 0\}$ be the set of indices where P_i is positive. Then the number of positive powers, $K = |\mathcal{I}|$, is the cardinality of the set, \mathcal{I} .

- Without loss of generality, we assume that \bar{N}_i 's are sorted in ascending order.
- It follows that, P_i; i = 1, · · · , M are in descending order and the first K powers are positive. Accordingly,

$$P_{i} = \begin{cases} \tilde{w}_{i} \left[\frac{1}{\lambda} - \bar{N}_{i} \right], & 1 \leq i \leq K; \\ 0, & \text{otherwise.} \end{cases}$$

• From the weighted sum power constraint (6) , we have

$$\frac{K}{\lambda} = P_t + \sum_{i=1}^{K} \bar{N}_i.$$

The Generalized Waterfilling Problem (GWFP)

FP)

Equivalence based Waterfilling (EBWF)

Concept of Equivalence

- Note that in (9) the unknowns are on the LHS and depend on the power budget, P_t and weighted sum $\sum_{i=1}^{K} \bar{N}_i$.
- Note that the nonlinearity is due to $\sum_{i=1}^{K} \bar{N}_i$.
- Observe that two different GWFP's with different \bar{N}_i 's but have the same weighted sum $\sum_{i=1}^{K} \bar{N}_i$ will have the same K.

Definition (*I*-Equivalent Waterfilling Problems)

For a given I, two WFPs are said to be I-Equivalent Waterfilling Problems if

- **1** They have the same weighted sum, $\Psi(I) = \sum_{i=1}^{I} \overline{N}_i = \sum_{i=1}^{I} \frac{N_i}{w_i}$,
- **2** The *I*-th step \overline{N}_{I} is same.

The Generalized Waterfilling Problem (GWFP)

Conclusio

Equivalence based Waterfilling (EBWF)

Examples of *I*-Equivalent WFPs Proposition

For every WWFP constructed, the following inequalities hold:

	The Generalized Waterfilling Problem (GWFP)	Conclusion	References
Equivalence based W	aterfilling (EBWF)		

1-Step WFP

1-Step WFP :

•
$$w_i = x_i = 1$$
 and $\bar{N}_i = d, i \leq m$ and $\bar{N}_i = s, i \geq m$ with $s > d$.

$$\Psi_{\mathcal{S}}(l) = \sum_{i=1}^{l} \bar{N}_i = \begin{cases} ld, & l \leq m, \\ ld + s(l-m), & otherwise. \end{cases}$$
(11)

In 1-Step WFP, K takes one of the two values :

$$K = \begin{cases} m, & (s-d)m \ge P_t; \to ms \ge P_t + \sum_{i=1}^m \bar{N}_i \to ms \ge d_m \\ M, & otherwise. \end{cases}$$
(12)

- This WFP does not occur in practical scenarios, but we will use to obtain a solution for practical WWFP's.
- 1-step is a WFP with a closed form solution for K. We can define more examples by assuming a structure on the \bar{N}_i 's.

Equivalence based Waterfilling (EBWF)

General I-Equivalence based Waterfilling for obtaining K

Require: Inputs required are M, P_t , \overline{N}_i (in ascending order). **Ensure:** Output is K.

- 1: Let m = 1. Construct an equivalent WFP (Arithemtic or Geometric or 1-step) for m.
- 2: Find the K for the equivalent WFP denoted as K_{eq} .
- 3: if $K_{eq} == m$ then
- 4: $K = K_{eq}$; Exit the algorithm.
- 5: **else**
- 6: increment m and go to 2.
- 7: end if
 - This algorithm gives the general setup for obtaining algorithms for solving GWFP based on a WFP with known K
 - We now give the detailed implementation of EBWF using 1-step
 WFP

	The Generalized Waterfilling Problem (GWFP) 000000000●000	Conclusion	References
Equivalence based W	aterfilling (EBWF)		
EBWF usi	ng 1-step WFP		

Require: Inputs required are M, P_t , \overline{N}_i (in ascending order). **Ensure:** Output is K.

- 1: i = 1. Denote $d_0 = P_t$.
- 2: Calculate $d_i = d_{i-1} + \bar{N}_i$.
- 3: Calculate s, the second step, of the 1-step *l*-equivalent WFP for each *i* (denoted by s_i) as $s_i = N_{i+1}$
- 4: if $is_i > d_i$ then
- 5: $K \leftarrow i$. Exit the algorithm.
- 6: **else**
- 7: $i \leftarrow i+1$, Go to 2
- 8: **end if**

The Generalized Waterfilling Problem (GWFP)

Conclusic

References

Equivalence based Waterfilling (EBWF)

EBWF Geometric Interpretation

This algorithm lends itself to a nice geometric interpretation:

- the term is_i gives the total area of i steps;
- d_i gives the area of the *i* 'Noise' steps along with P_t
- the difference, $is_i (d_i P_t)$, is the area where the 'water can be poured'
- If $is_i > d_i$, then the number of steps is 'enough' to store all the work the store work to be the store the st

The Generalized Waterfilling Problem (GWFP) 000000000000000 Conclusio

4 D b 4 B b 4 B b 4

Equivalence based Waterfilling (EBWF)

Calculating the Powers and Computational Complexity

- Calculate the water level as $\frac{1}{\lambda} = \frac{d_K}{K}$.
- Calculate K powers using the water level & (6).

Table: Computational Complexity of various known solutions to WWFP

No. of flops in PWFA	No. of flops in IWFA	No. of flops in algo. of [6]	No. of flops in algo. of [7]	No. of flops in GWF of [5]	No. of flops in proposed solution
(no. of iterations)× O(M ²)	(no. of iterations) × (5M + 1)	<u>(M-K+7)(M+K)</u>	$\frac{M(M+3)}{2}$ +	8M + 3[5]	4(M+1)
[3]	+ 2M	2	2K(2K+1)		

• Observe the reduction by a factor of 2

भारतीय प्रौद्योगिकी संस्थान हैदराबाद dian Institute of Technology Hyderaba

	The Generalized Waterfilling Problem (GWFP) 00000000000●	Conclusion	References
Equivalence based Wate	rfilling (EBWF)		

Simulation Results

Table: Computational complexities of existing and the proposed solution for WWFP, $P_t = 1, \sigma^2 = 10^{-1}$. h_i , w_i & x_i are exponentially distributed with variance 1

	No. of	No. of	No. of	No. of	No. of	No. of flops
$\mathbf{M} ightarrow \mathbf{K}$	flops in	flops in	flops	flops in	flops in	in proposed
	PWFA	IWFA	in [6]	[7]	GWF	solution
128 ightarrow 27	40599552	28460	8370	11354	1027	161
	(2478)	(44)				
$192 \rightarrow 32$	136691712	44590	18704	22880	1539	191
	(3708)	(46)				
$256 \rightarrow 42$	236781568	58157	32929	40292	2051	251
	(3613)	(45)				
512 ightarrow 53	1.2336e+009	121391	131645	143182	4099	317
	(4706)	(47)				
$1024 \rightarrow 73$	7.3725e+009	268340	525463	547286	8195	437
	(7031)	(52)				

- Number of flops in IWFA, algorithms of [6] & [7] $> O(10^2) \times 10^{-10}$ number of flops in PS. (PS \rightarrow proposed solution)
- Number of flops in GWF of $[5] > O(10) \times$ number of flops in PS.

Conclusion

भारतीय प्रौद्योगिकी संस्थान हैयराबाय Indian Institute of Technology Hyderabad

イロン イロン イヨン イヨン

Conclusion

- We have proposed solutions for doing power allocation to Generalized Water filling problem namely GWFP.
- 2 The proposed solutions produce optimal powers.
- 3 Also, the number of flops for GWFP are of O(M) and are far less than the computation complexities of existing algorithms.

References

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

イロン イヨン イヨン イヨン

References I

- M. Kobayashi and G. Caire, "Iterative waterfilling for weighted rate sum maximization in mimo-ofdm broadcast channels," in *Proc. of ICASSP 2007*, Apr. 2007, pp. III–5 – III–8.
- [2] W. Yu, G. Ginis, and J. M. Cioffi, "Distributed multiuser power control for digital subscriber lines," IEEE J. Sel. Areas Commun., vol. 20, no. 5, Jun. 2002.
- [3] A. Liu, Y. Liu, V. K. N. Lau, H. Xiang, and W. Luo. (2011) Polite water-filling for Weighted sum-rate maximization in MIMO B-MAC networks under Multiple Linear Constraints. [Online]. Available: http://ecee.colorado.edu/~liue/publications/index.html
- [4] N.Kalpana, M. Z. A. Khan, and U.B.Desai, "Optimal Power allocation for Secondary users in CR networks," in Proc. of 2011 IEEE Advanced Networking and Telecommunication Systems (ANTS) Conference (IEEE ANTS 2011), Bangalore, India, Dec. 2011.
- [5] P. He, L. Zhao, S. Zhou, and Z. Niu, "Water-filling: A geometric approach and its application to solve generalized radio resource allocation problems," *IEEE Trans. Wireless Commun.*, vol. 12, no. 7, Jul. 2013.
- [6] D. P. Palomar and J. R. Fonollosa, "Practical algorithms for a family of waterfilling solutions," IEEE Trans. Signal Process., vol. 53, no. 2, pp. 686–695, Feb. 2005.
- [7] E. Altman, K. Avrachenkov, and A. Garnaev, "Closed form solutions for water-filling problems in optimization and same frameworks," *Telecommunication Systems*, vol. 47, no. 1-2, pp. 153–164, 2011.

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

(日) (同) (三) (三)

The Generalized Waterfilling Problem (GWFP)

Conclusio

References

Thank you.... ????

मारतीय प्रौद्योगिकी संस्थान वैदराबाद Indian Institute of Technology Hyderabad

イロン イヨン イヨン イヨン